
Sign up to save your podcasts
Or
Today we’re joined by Luke Zettlemoyer, professor at University of Washington and a research manager at Meta. In our conversation with Luke, we cover multimodal generative AI, the effect of data on models, and the significance of open source and open science. We explore the grounding problem, the need for visual grounding and embodiment in text-based models, the advantages of discretization tokenization in image generation, and his paper Scaling Laws for Generative Mixed-Modal Language Models, which focuses on simultaneously training LLMs on various modalities. Additionally, we cover his papers on Self-Alignment with Instruction Backtranslation, and LIMA: Less Is More for Alignment.
The complete show notes for this episode can be found at twimlai.com/go/650.
4.7
414414 ratings
Today we’re joined by Luke Zettlemoyer, professor at University of Washington and a research manager at Meta. In our conversation with Luke, we cover multimodal generative AI, the effect of data on models, and the significance of open source and open science. We explore the grounding problem, the need for visual grounding and embodiment in text-based models, the advantages of discretization tokenization in image generation, and his paper Scaling Laws for Generative Mixed-Modal Language Models, which focuses on simultaneously training LLMs on various modalities. Additionally, we cover his papers on Self-Alignment with Instruction Backtranslation, and LIMA: Less Is More for Alignment.
The complete show notes for this episode can be found at twimlai.com/go/650.
161 Listeners
481 Listeners
299 Listeners
323 Listeners
147 Listeners
265 Listeners
189 Listeners
290 Listeners
88 Listeners
122 Listeners
197 Listeners
76 Listeners
442 Listeners
30 Listeners
36 Listeners