
Sign up to save your podcasts
Or
Today we conclude our coverage of the 2022 NeurIPS series joined by Catherine Nakalembe, an associate research professor at the University of Maryland, and Africa Program Director under NASA Harvest. In our conversation with Catherine, we take a deep dive into her talk from the ML in the Physical Sciences workshop, Supporting Food Security in Africa using Machine Learning and Earth Observations. We discuss the broad challenges associated with food insecurity, as well as Catherine’s role and the priorities of Harvest Africa, a program focused on advancing innovative satellite-driven methods to produce automated within-season crop type and crop-specific condition products that support agricultural assessments. We explore some of the technical challenges of her work, including the limited, but growing, access to remote sensing and earth observation datasets and how the availability of that data has changed in recent years, the lack of benchmarks for the tasks she’s working on, examples of how they’ve applied techniques like multi-task learning and task-informed meta-learning, and much more.
The complete show notes for this episode can be found at twimlai.com/go/611.
4.7
412412 ratings
Today we conclude our coverage of the 2022 NeurIPS series joined by Catherine Nakalembe, an associate research professor at the University of Maryland, and Africa Program Director under NASA Harvest. In our conversation with Catherine, we take a deep dive into her talk from the ML in the Physical Sciences workshop, Supporting Food Security in Africa using Machine Learning and Earth Observations. We discuss the broad challenges associated with food insecurity, as well as Catherine’s role and the priorities of Harvest Africa, a program focused on advancing innovative satellite-driven methods to produce automated within-season crop type and crop-specific condition products that support agricultural assessments. We explore some of the technical challenges of her work, including the limited, but growing, access to remote sensing and earth observation datasets and how the availability of that data has changed in recent years, the lack of benchmarks for the tasks she’s working on, examples of how they’ve applied techniques like multi-task learning and task-informed meta-learning, and much more.
The complete show notes for this episode can be found at twimlai.com/go/611.
161 Listeners
470 Listeners
295 Listeners
324 Listeners
143 Listeners
190 Listeners
280 Listeners
88 Listeners
101 Listeners
125 Listeners
190 Listeners
63 Listeners
423 Listeners
29 Listeners
37 Listeners