Share The New Quantum Era
Share to email
Share to Facebook
Share to X
By Sebastian Hassinger & Kevin Rowney
4.6
3131 ratings
The podcast currently has 40 episodes available.
In this episode of The New Quantum Era, Sebastian talks with Martin Schultz, Professor at TU Munich and board member of the Leibniz Supercomputing Center (LRZ) about the critical need to integrate quantum computers with classical supercomputing resources to build practical quantum solutions. They discuss the Munich Quantum Valley initiative, focusing on the challenges and advancements in merging quantum and classical computing.
Main Topics Discussed:
Munich Quantum Valley
IEEE Quantum
Welcome to The New Quantum Era, a podcast hosted by Sebastian Hassinger and Kevin Rowney. In this episode, we have an insightful conversation with Dr. Toby Cubitt, a pioneer in quantum computing, a professor at UCL, and a co-founder of Phasecraft. Dr. Cubitt shares his deep understanding of the current state of quantum computing, the challenges it faces, and the promising future it holds. He also discusses the unique approach Phasecraft is taking to bridge the gap between theoretical algorithms and practical, commercially viable applications on near-term quantum hardware.
Key Highlights:
Papers Mentioned in this episode:
Other sites:
In this episode of The New Quantum Era podcast, hosts Sebastian Hassinger and Kevin Roney interview Jessica Pointing, a PhD student at Oxford studying quantum machine learning.
Classical Machine Learning Context
Quantum Neural Networks (QNNs)
Implications and Future Directions
In summary, this insightful interview with Jessica Pointing highlights the current challenges and open questions in quantum machine learning, providing a framework for critically evaluating progress in the field. While the path to quantum advantage in machine learning remains uncertain, ongoing research continues to expand our understanding of the possibilities and limitations of QNNs.
Paper cited in the episode:
Do Quantum Neural Networks have Simplicity Bias?
Sebastian is joined by Susanne Yelin, Professor of Physics in Residence at Harvard University and the University of Connecticut.
Susanne's Background:
Quantum Machine Learning Challenges
Quantum Reservoir Computing
Quantum Chemistry Application
Future Directions
Welcome back to The New Quantum Era, the podcast where we explore the cutting-edge developments in quantum computing. In today’s episode, hosts Sebastian Hassinger and Kevin Rowe are joined by Dr. Julien Camirand Lemyre, the CEO and co-founder of Nord Quantique. Nord Quantique is a startup spun out from the University of Sherbrooke in Quebec, Canada, and is making significant strides in the field of quantum error correction using innovative superconducting qubit designs. In this conversation, Dr. Camirand Lemyre shares insights into their groundbreaking research and the innovative approaches they are taking to improve quantum computing systems.
Listeners can expect to learn about:
Highlights:
Mentioned in this episode:
Tune in to hear about these exciting developments and what they mean for the future of quantum computing!
Welcome to another episode of The New Quantum Era! Today, we have a fascinating conversation with Professor Jens Eisert, a veteran in the field of quantum information science. Jens takes us through his journey from his PhD days, delving into the role of entanglement in quantum computing and communication, to leading a team that bridges theoretical and practical aspects of quantum technology. In this episode, we explore the fine line between classical and quantum worlds, the potential and limitations of near-term quantum devices, and the role of theoretical frameworks in advancing quantum technologies. Here are some key highlights from our conversation:
Welcome to The New Quantum Era podcast! In today’s episode, we dive deep into the fascinating world of quantum computing and the broader tech landscape with Anastasia Marchenkova, who has a unique blend of experiences in startups, academia, and venture capital. Join us as we explore the intersections of technology, business, and education, and uncover the challenges and opportunities that lie ahead in the quantum era.
Highlights from the Interview:
Mentioned in This Episode:
In this episode of The New Quantum Era, Kevin and Sebastian are joined by a special guest, Paul Cadden-Zemansky, Associate Professor of Physics at Bard College and Director of the Physics Program. Paul is also on the Executive Committee for the International Year of Quantum at the American Physical Society and has been actively involved in the UN’s recent declaration of 2025 as the International Year of Quantum Science and Technology. With the UN resolution now official, Paul joins us to discuss the significance and plans for this global celebration of quantum mechanics.
Listeners can expect an insightful conversation covering the following key points:
Mentioned in this episode:
Join us as we delve into the exciting world of quantum mechanics and explore the plans for celebrating its centennial year!
In this episode of The New Quantum Era, host Sebastian Hassinger comes to you again from Rensselaer Polytechnic Institute, during their launch event in April 2024 for the deployment of an IBM System One quantum computer on their campus. RPI invited me to lead a panel discussion with members of their faculty and IT team, and provided a podcast studio for my use for the remainder of the week, where he recorded a series of interviews. In this episode Sebastian interviews Di Fang, an assistant professor of mathematics at Duke University and member of the Duke Quantum Center. They discuss Dr. Fang's research on the theoretical aspects of quantum computing and quantum simulation, the potential for quantum computers to demonstrate quantum advantage over classical computers, and the need to balance theory with practical applications. Key topics and takeaways from the conversation include:
- Dr. Fang's background as a mathematician and how taking a quantum computing class taught by Umesh Vazirani at UC Berkeley sparked her interest in the field of quantum information science
- The potential for quantum computers to directly simulate quantum systems like molecules, going beyond the approximations required by classical computation
- The importance of both proving theoretical bounds on quantum algorithms and working towards practical resource estimation and hardware implementation to demonstrate real quantum advantage
- The stages of development needed to go from purely theoretical quantum advantage to solving useful real-world problems, and the role of Google's quantum XPRIZE competition in motivating practical applications
- The long-term potential for quantum computing to have a disruptive impact like AI, but the risk of a "quantum winter" if practical results don't materialize, and the need for continued fundamental research by academics alongside industry efforts
In this episode of The New Quantum Era, we're diving deep into the intersection of quantum computing and chemistry with Jamie Garcia, Technical Program Director for Algorithms and Scientific Partnerships Group with IBM Quantum. Jamie brings a unique perspective, having transitioned from a background in chemistry to the forefront of quantum computing. At the heart of our discussion is the deployment of the IBM Quantum computer at RPI, marking a significant milestone as the first of its kind on a university campus. Jamie shares insights into the challenges and breakthroughs in using quantum computing to push the boundaries of computational chemistry, highlighting the potential to revolutionize how we approach complex chemical reactions and materials science.
Throughout the interview, Jamie discusses the evolution of quantum computing from a theoretical novelty to a practical tool in scientific research, particularly in chemistry. We explore the limitations of classical computational methods in chemistry, such as the reliance on approximations, and how quantum computing offers the promise of more accurate and efficient simulations. Jamie also delves into the concept of "utility" in quantum computing, illustrating how IBM's quantum computers are beginning to perform tasks that challenge classical computing capabilities. The conversation further touches on the significance of quantum computing in education and research, the integration of quantum systems with high-performance computing (HPC) centers, and the future of quantum computing in addressing complex problems in chemistry and beyond.
Jamie's homepage at IBM Research
How Quantum Computing Could Remake Chemistry, an article by Jamie Garcia in Scientific American
The podcast currently has 40 episodes available.
1,326 Listeners
2,155 Listeners
332 Listeners
13,719 Listeners
499 Listeners
774 Listeners
455 Listeners
953 Listeners
68 Listeners
4,007 Listeners
2,253 Listeners
454 Listeners
247 Listeners
332 Listeners
414 Listeners