
Sign up to save your podcasts
Or


Today we’re joined by Bayan Bruss, Vice President of Applied ML Research at Capital One. In our conversation with Bayan, we covered a pair of papers his team presented at this year’s ICML conference. We begin with the paper Interpretable Subspaces in Image Representations, where Bayan gives us a dive deep into the interpretability framework, embedding dimensions, contrastive approaches, and how their model can accelerate image representation in deep learning. We also explore GOAT: A Global Transformer on Large-scale Graphs, a scalable global graph transformer. We talk through the computation challenges, homophilic and heterophilic principles, model sparsity, and how their research proposes methodologies to get around the computational barrier when scaling to large-scale graph models.
The complete show notes for this episode can be found at twimlai.com/go/641.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Bayan Bruss, Vice President of Applied ML Research at Capital One. In our conversation with Bayan, we covered a pair of papers his team presented at this year’s ICML conference. We begin with the paper Interpretable Subspaces in Image Representations, where Bayan gives us a dive deep into the interpretability framework, embedding dimensions, contrastive approaches, and how their model can accelerate image representation in deep learning. We also explore GOAT: A Global Transformer on Large-scale Graphs, a scalable global graph transformer. We talk through the computation challenges, homophilic and heterophilic principles, model sparsity, and how their research proposes methodologies to get around the computational barrier when scaling to large-scale graph models.
The complete show notes for this episode can be found at twimlai.com/go/641.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners