
Sign up to save your podcasts
Or
Today, we're joined by Drago Anguelov, head of AI foundations at Waymo, for a deep dive into the role of foundation models in autonomous driving. Drago shares how Waymo is leveraging large-scale machine learning, including vision-language models and generative AI techniques to improve perception, planning, and simulation for its self-driving vehicles. The conversation explores the evolution of Waymo’s research stack, their custom “Waymo Foundation Model,” and how they’re incorporating multimodal sensor data like lidar, radar, and camera into advanced AI systems. Drago also discusses how Waymo ensures safety at scale with rigorous validation frameworks, predictive world models, and realistic simulation environments. Finally, we touch on the challenges of generalization across cities, freeway driving, end-to-end learning vs. modular architectures, and the future of AV testing through ML-powered simulation.
The complete show notes for this episode can be found at https://twimlai.com/go/725.
4.7
414414 ratings
Today, we're joined by Drago Anguelov, head of AI foundations at Waymo, for a deep dive into the role of foundation models in autonomous driving. Drago shares how Waymo is leveraging large-scale machine learning, including vision-language models and generative AI techniques to improve perception, planning, and simulation for its self-driving vehicles. The conversation explores the evolution of Waymo’s research stack, their custom “Waymo Foundation Model,” and how they’re incorporating multimodal sensor data like lidar, radar, and camera into advanced AI systems. Drago also discusses how Waymo ensures safety at scale with rigorous validation frameworks, predictive world models, and realistic simulation environments. Finally, we touch on the challenges of generalization across cities, freeway driving, end-to-end learning vs. modular architectures, and the future of AV testing through ML-powered simulation.
The complete show notes for this episode can be found at https://twimlai.com/go/725.
161 Listeners
480 Listeners
295 Listeners
325 Listeners
147 Listeners
265 Listeners
189 Listeners
290 Listeners
88 Listeners
123 Listeners
197 Listeners
76 Listeners
443 Listeners
30 Listeners
36 Listeners