
Sign up to save your podcasts
Or


Today we’re joined by Roland Memisevic, a senior director at Qualcomm AI Research. In our conversation with Roland, we discuss the significance of language in humanlike AI systems and the advantages and limitations of autoregressive models like Transformers in building them. We cover the current and future role of recurrence in LLM reasoning and the significance of improving grounding in AI—including the potential of developing a sense of self in agents. Along the way, we discuss Fitness Ally, a fitness coach trained on a visually grounded large language model, which has served as a platform for Roland’s research into neural reasoning, as well as recent research that explores topics like visual grounding for large language models and state-augmented architectures for AI agents.
The complete show notes for this episode can be found at twimlai.com/go/646.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Roland Memisevic, a senior director at Qualcomm AI Research. In our conversation with Roland, we discuss the significance of language in humanlike AI systems and the advantages and limitations of autoregressive models like Transformers in building them. We cover the current and future role of recurrence in LLM reasoning and the significance of improving grounding in AI—including the potential of developing a sense of self in agents. Along the way, we discuss Fitness Ally, a fitness coach trained on a visually grounded large language model, which has served as a platform for Roland’s research into neural reasoning, as well as recent research that explores topics like visual grounding for large language models and state-augmented architectures for AI agents.
The complete show notes for this episode can be found at twimlai.com/go/646.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners