
Sign up to save your podcasts
Or
Large language models (LLMs) are becoming increasingly more impressive at creating human-like text and answering questions, but whether they can understand the meaning of the words they generate is a hotly debated issue. A big challenge is that LLMs are black boxes; they can make predictions and decisions on the order of words, but they cannot communicate the reasons for doing so.
Ellie Pavlick at Brown University is building models that could help understand how LLMs process language compared with humans. In this episode of The Joy of Why, Pavlick discusses what we know and don’t know about LLM language processing, how their processes differ from humans, and how understanding LLMs better could also help us better appreciate our own capacity for knowledge and creativity.
4.9
452452 ratings
Large language models (LLMs) are becoming increasingly more impressive at creating human-like text and answering questions, but whether they can understand the meaning of the words they generate is a hotly debated issue. A big challenge is that LLMs are black boxes; they can make predictions and decisions on the order of words, but they cannot communicate the reasons for doing so.
Ellie Pavlick at Brown University is building models that could help understand how LLMs process language compared with humans. In this episode of The Joy of Why, Pavlick discusses what we know and don’t know about LLM language processing, how their processes differ from humans, and how understanding LLMs better could also help us better appreciate our own capacity for knowledge and creativity.
934 Listeners
14,016 Listeners
534 Listeners
804 Listeners
477 Listeners
315 Listeners
1,037 Listeners
75 Listeners
4,108 Listeners
2,298 Listeners
489 Listeners
252 Listeners
285 Listeners
445 Listeners
368 Listeners
2,157 Listeners