
Sign up to save your podcasts
Or
本期的 10 篇论文如下:
[00:40] TOP1(🔥281) | 🧠 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(DeepSeek-R1:通过强化学习激励大语言模型的推理能力)
[03:13] TOP2(🔥271) | ⚡ MiniMax-01: Scaling Foundation Models with Lightning Attention(MiniMax-01:基于闪电注意力机制扩展基础模型)
[05:36] TOP3(🔥249) | 🧠 rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking(rStar-Math:小型语言模型通过自我进化的深度思考掌握数学推理)
[08:13] TOP4(🔥103) | 🧠 Evolving Deeper LLM Thinking(演化更深层次的LLM思维)
[10:28] TOP5(🔥99) | 📚 2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining(2.5年课堂:用于视觉-语言预训练的多模态教科书)
[12:51] TOP6(🔥90) | 🚀 REINFORCE++: A Simple and Efficient Approach for Aligning Large Language Models(REINFORCE++:一种简单高效的大语言模型对齐方法)
[15:15] TOP7(🔥90) | 🧠 Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though(迈向LLMs中的系统2推理:学习如何通过元思维链进行思考)
[17:14] TOP8(🔥89) | 📊 The Lessons of Developing Process Reward Models in Mathematical Reasoning(数学推理中过程奖励模型开发的经验教训)
[19:33] TOP9(🔥88) | 🤔 Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training(Agent-R:通过迭代自训练使语言模型代理具备反思能力)
[21:35] TOP10(🔥87) | 🧠 The GAN is dead; long live the GAN! A Modern GAN Baseline(GAN已死;GAN万岁!一个现代的GAN基线)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递
本期的 10 篇论文如下:
[00:40] TOP1(🔥281) | 🧠 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(DeepSeek-R1:通过强化学习激励大语言模型的推理能力)
[03:13] TOP2(🔥271) | ⚡ MiniMax-01: Scaling Foundation Models with Lightning Attention(MiniMax-01:基于闪电注意力机制扩展基础模型)
[05:36] TOP3(🔥249) | 🧠 rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking(rStar-Math:小型语言模型通过自我进化的深度思考掌握数学推理)
[08:13] TOP4(🔥103) | 🧠 Evolving Deeper LLM Thinking(演化更深层次的LLM思维)
[10:28] TOP5(🔥99) | 📚 2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining(2.5年课堂:用于视觉-语言预训练的多模态教科书)
[12:51] TOP6(🔥90) | 🚀 REINFORCE++: A Simple and Efficient Approach for Aligning Large Language Models(REINFORCE++:一种简单高效的大语言模型对齐方法)
[15:15] TOP7(🔥90) | 🧠 Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though(迈向LLMs中的系统2推理:学习如何通过元思维链进行思考)
[17:14] TOP8(🔥89) | 📊 The Lessons of Developing Process Reward Models in Mathematical Reasoning(数学推理中过程奖励模型开发的经验教训)
[19:33] TOP9(🔥88) | 🤔 Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training(Agent-R:通过迭代自训练使语言模型代理具备反思能力)
[21:35] TOP10(🔥87) | 🧠 The GAN is dead; long live the GAN! A Modern GAN Baseline(GAN已死;GAN万岁!一个现代的GAN基线)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递