Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)

018 - The Business Value of Showing the “Why” in AI Models with Jana Eggers (CEO, Naralogics)


Listen Later

Jana Eggers, a self-proclaimed math and computer nerd, is CEO of Nara Logics, a company that helps organizations use AI to eliminate data silos and unlock the full value of their data, delivering predictive personalized experiences to their customers along the way. The company leverages the latest neuroscience research to model data the same way our brains do. Jana also serves on Fannie Mae’s digital advisory board, which is tasked with finding affordable housing solutions across the United States. Prior to joining Nara Logics, Jana wore many different hats, serving as CEO of Spreadshirt, and General Manager of QuickBase at Intuit, among other positions. She also knows about good restaurants in PDX!
In today’s episode, Jana and I explore her approaches to using AI to help enterprises make interesting and useful predictions that drive better business outcomes and improve customer experience. In addition to discussing how AI can help strengthen personalization and support smarter decision making, we also covered:
The power of showing the whys when providing predictions (i.e., explainable AI or XAI).
Jana’s thoughts on why some data scientists struggle with inflated expectations around AI
Brian’s #facepalm about lipstick and data
The power of what-if simulations and being able to remove factors from predictions
The power of context and how Nara Logics weighs recent data vs. long-term historical data in its predictions
How Nara Logics leverages the wiring of the brain—the connectome—to inspire the models they build and the decision support help they provide to customers
Why AI initiatives need to consider the “AI trinity”: data, the algorithm, and the results an organization is aiming for
Resources and Links:
Nara Logics
Follow Jana on Twitter
Connect with Jana on LinkedIn
Quotes from Today’s Episode
“We have a platform that is really built for decision support. How do you go from having […]20 to having about 500 to 2,000 decision factors coming in? Once we get that overload of information, our tool is used to help people with those decisions. And yes, we’re using a different approach than the traditional neural net, which is what deep learning is based on. While we use that in our tool, we’re more on the cognitive side. […]I’ve got a lot of different signals coming in, how do I understand how those signals relate to each other and then make decisions based on that?” — Jana
“One of the things that we do that also stands us apart is that our AI is transparent—meaning that when we provide an answer, we also give the reasons why that is the right answer for this context. We think it is important to know what was taken into account and what factors weigh more heavily in this context than other contexts.” — Jana
“It is extremely unusual—and I can even say that I’ve never really seen it—that people just say, Okay, I trust the machine. I’m comfortable with that. It knows more than me. That’s really unusual. The only time I’ve seen that is when you’re really doing something new and no one there has any idea what it should be.” — Jana
“With regards to tech answering “why,” I’ve worked on several monitoring and analytics applications in the IT space. When doing root cause analysis, we came up with this idea of referring to monitored objects as being abnormally critical and normally critical. Because at certain times of day, you might be running a backup job and so the IO is going crazy, and maybe the latency is higher. But the IO is supposed to be that way at that time. So how do you knock down that signal and not throw up all the red flags and light up the dashboard when it’s supposed to be operating that way? Answering “why” is difficult. ” — Brian
“We’ve got lipstick, we’ve got kissing. I’m going to get flagged as ‘parental advisory’ on this episode in iTunes probably. ;-)” — Brian
“You can’t just live in the closet and do your math and hope that everyone is going to see the value of it. Anytime we’re building these complex
...more
View all episodesView all episodes
Download on the App Store

Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)By Brian T. O’Neill from Designing for Analytics

  • 5
  • 5
  • 5
  • 5
  • 5

5

39 ratings


More shows like Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

View all
Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

Software Engineering Radio - the podcast for professional software developers

262 Listeners

HBR IdeaCast by Harvard Business Review

HBR IdeaCast

257 Listeners

a16z Podcast by Andreessen Horowitz

a16z Podcast

997 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

474 Listeners

UI Breakfast: UI/UX Design and Product Strategy by Jane Portman

UI Breakfast: UI/UX Design and Product Strategy

134 Listeners

Acquired by Ben Gilbert and David Rosenthal

Acquired

3,659 Listeners

Odd Lots by Bloomberg

Odd Lots

1,733 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

429 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

143 Listeners

Masters of Scale by WaitWhat

Masters of Scale

3,968 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

196 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

Product Thinking by Melissa Perri

Product Thinking

144 Listeners