Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)

034 – ML & UX: To Augment or Automate? Plus, Rating Overall Analytics Efficacy with Eric Siegel, Ph.D.


Listen Later

Eric Siegel, Ph.D. is founder of the Predictive Analytics World and Deep Learning World conference series, executive editor of “The Predictive Analytics Times,” and author of “Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die.” A former Columbia University professor and host of the Dr. Data Show web series, Siegel is a renowned speaker and educator who has been commissioned for more than 100 keynote addresses across multiple industries. Eric is best known for making the “how” and “why” of predictive analytics (aka machine learning) understandable and captivating to his audiences.
In our chat, we covered:
The value of defining business outcomes and end user’s needs prior to starting the technical work of predictive modeling, algorithms, or software design.
The idea of data prototypes being used before engaging in data science to determine where models could potentially fail—saving time while improving your odds of success.
The first and most important step of Eric’s five-step analytics deployment plan
Getting multiple people aligned and coordinated about pragmatic considerations and practical constraints surrounding ML project deployment.
The score (1-10) Eric  gave the data community on its ability to turn data into value
The difference between decision support and decision automation and what the Central Intelligence Agency’s CDAO thinks about these two methods for using machine learning.
Understanding how human decisions are informed by quantitative predictions from predictive modes, and what’s required to deliver information in a way that aligns with their needs.
How Eric likes to bring agility to machine learning by deploying and scaling models incrementally to mitigate risk
Where the analytics field currently stands in its overall ability to generate value in the last mile.
Resources and Links:
Machine Learning Week
#experiencingdata
PredictiveAnalyticsWorld.com
ThePredictionBook.com
Dr. Data Show
Twitter: @predictanalytic
Quotes from Today’s Episode
“The greatest pitfall that hinders analytics is not to properly plan for its deployment.” — Brian, quoting Eric
“You don’t jump to number crunching. You start [by asking], ‘Hey, how is this thing going to actually improve business?’ “ — Eric
“You can do some preliminary number crunching, but don’t greenlight, trigger, and go ahead with the whole machine learning project until you’ve planned accordingly, and iterated. It’s a collaborative effort to design, target, define scope, and ultimately greenlight and execute on a full-scale machine learning project.” — Eric
“If you’re listening to this interview, it’s your responsibility.” — Eric, commenting on whose job it is to define the business objective of a project.
“Yeah, so in terms of if 10 were the highest potential [score], in the sort of ideal world where it was really being used to its fullest potential, I don’t know, I guess I would give us a score of [listen to find out!]. Is that what Tom [Davenport] gave!?” — Eric, when asked to rate the analytics community on its ability to deliver value with data
“We really need to get past our outputs, and the things that we make, the artifacts and those types of software, whatever it may be, and really try to focus on the downstream outcome, which is sometimes harder to manage, or measure … but ultimately, that’s where the value is created.” — Brian
“Whatever the deployment is, whatever the change from the current champion method, and now this is the challenger method, you don’t have to jump entirely from one to the other. You can incrementally deploy it. So start by saying well, 10 percent of the time we’ll use the new method which is driven by a predictive model, or by a better predictive model, or some kind of change. So in the change in the transition, you sort of do it incrementally, and you mitigate your risk in that way.”— Eric
...more
View all episodesView all episodes
Download on the App Store

Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)By Brian T. O’Neill from Designing for Analytics

  • 5
  • 5
  • 5
  • 5
  • 5

5

39 ratings


More shows like Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

View all
Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

Software Engineering Radio - the podcast for professional software developers

262 Listeners

HBR IdeaCast by Harvard Business Review

HBR IdeaCast

257 Listeners

a16z Podcast by Andreessen Horowitz

a16z Podcast

997 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

474 Listeners

UI Breakfast: UI/UX Design and Product Strategy by Jane Portman

UI Breakfast: UI/UX Design and Product Strategy

134 Listeners

Acquired by Ben Gilbert and David Rosenthal

Acquired

3,659 Listeners

Odd Lots by Bloomberg

Odd Lots

1,733 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

429 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

143 Listeners

Masters of Scale by WaitWhat

Masters of Scale

3,968 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

196 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

Product Thinking by Melissa Perri

Product Thinking

144 Listeners