Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)

086 - CED: My UX Framework for Designing Analytics Tools That Drive Decision Making


Listen Later

Today, I’m flying solo in order to introduce you to CED: my three-part UX framework for designing your ML / predictive / prescriptive analytics UI around trust, engagement, and indispensability. Why this, why now? I have had several people tell me that this has been incredibly helpful to them in designing useful, usable analytics tools and decision support applications. 

 

I have written about the CED framework before at the following link:

 

https://designingforanalytics.com/ced

 

There you will find an example of the framework put into a real-world context. In this episode, I wanted to add some extra color to what is discussed in the article. If you’re an individual contributor, the best part is that you don’t have to be a professional designer to begin applying this to your own data products. And for leaders of teams, you can use the ideas in CED as a “checklist” when trying to audit your team’s solutions in the design phase—before it’s too late or expensive to make meaningful changes to the solutions. 


CED is definitely easier to implement if you understand the basics of human-centered design, including research, problem finding and definition, journey mapping, consulting, and facilitation etc. If you need a step-by-step method to develop these foundational skills, my training program, Designing Human-Centered Data Products, might help. It comes in two formats: a Self-Guided Video Course and a bi-annual Instructor-Led Seminar.

Quotes from Today’s Episode
  • “‘How do we visualize the data?’ is the wrong starting question for designing a useful decision support application. That makes all kinds of assumptions that we have the right information, that we know what the users' goals and downstream decisions are, and we know how our solution will make a positive change in the customer or users’ life.”- Brian (@rhythmspice) (02:07)
  • “The CED is a UX framework for designing analytics tools that drive decision-making. Three letters, three parts: Conclusions; C, Evidence: E, and Data: D. The tough pill for some technical leaders to swallow is that the application, tool or product they are making may need to present what I call a ‘conclusion’—or if you prefer, an ‘opinion.’ Why? Because many users do not want an ‘exploratory’ tool—even when they say they do. They often need an insight to start with, before exploration time  becomes valuable.” - Brian (@rhythmspice) (04:00)

  • “CED requires you to do customer and user research to understand what the meaningful changes, insights, and things that people want or need actually are. Well designed ‘Conclusions’—when experienced in an analytics tool using the CED framework—often manifest themselves as insights such as unexpected changes, confirmation of expected changes, meaningful change versus meaningful benchmarks, scoring how KPIs track to predefined and meaningful ranges, actionable recommendations, and next best actions. Sometimes these Conclusions are best experienced as charts and visualizations, but not always—and this is why visualizing the data rarely is the right place to begin designing the UX.” - Brian (@rhythmspice) (08:54)

  • “If I see another analytics tool that promises ‘actionable insights’ but is primarily experienced as a collection of gigantic data tables with 10, 20, or 30+ columns of data to parse, your design is almost certainly going to frustrate, if not alienate, your users. Not because all table UIs are bad, but because you’ve put a gigantic tool-time tax on the user, forcing them to derive what the meaningful conclusions should be.”   - Brian (@rhythmspice) (20:20)
  • ...more
    View all episodesView all episodes
    Download on the App Store

    Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)By Brian T. O’Neill from Designing for Analytics

    • 5
    • 5
    • 5
    • 5
    • 5

    5

    39 ratings


    More shows like Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

    View all
    Software Engineering Radio - the podcast for professional software developers by se-radio@computer.org

    Software Engineering Radio - the podcast for professional software developers

    272 Listeners

    HBR IdeaCast by Harvard Business Review

    HBR IdeaCast

    1,830 Listeners

    a16z Podcast by Andreessen Horowitz

    a16z Podcast

    1,033 Listeners

    Data Skeptic by Kyle Polich

    Data Skeptic

    480 Listeners

    UI Breakfast: UI/UX Design and Product Strategy by Jane Portman

    UI Breakfast: UI/UX Design and Product Strategy

    137 Listeners

    Acquired by Ben Gilbert and David Rosenthal

    Acquired

    3,987 Listeners

    Odd Lots by Bloomberg

    Odd Lots

    1,784 Listeners

    The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

    The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

    441 Listeners

    Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

    Super Data Science: ML & AI Podcast with Jon Krohn

    298 Listeners

    Data Engineering Podcast by Tobias Macey

    Data Engineering Podcast

    140 Listeners

    Masters of Scale by WaitWhat

    Masters of Scale

    3,995 Listeners

    DataFramed by DataCamp

    DataFramed

    267 Listeners

    Practical AI by Practical AI LLC

    Practical AI

    192 Listeners

    Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

    Machine Learning Street Talk (MLST)

    88 Listeners

    Product Thinking by Melissa Perri

    Product Thinking

    144 Listeners