
Sign up to save your podcasts
Or


Recently, OpenAI made a splash by announcing a new "Superalignment" team. Lead by Jan Leike and Ilya Sutskever, the team would consist of top researchers, attempting to solve alignment for superintelligent AIs in four years by figuring out how to build a trustworthy human-level AI alignment researcher, and then using it to solve the rest of the problem. But what does this plan actually involve? In this episode, I talk to Jan Leike about the plan and the challenges it faces.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
Episode art by Hamish Doodles: hamishdoodles.com/
Topics we discuss, and timestamps:
- 0:00:37 - The superalignment team
- 0:02:10 - What's a human-level automated alignment researcher?
- 0:06:59 - The gap between human-level automated alignment researchers and superintelligence
- 0:18:39 - What does it do?
- 0:24:13 - Recursive self-improvement
- 0:26:14 - How to make the AI AI alignment researcher
- 0:30:09 - Scalable oversight
- 0:44:38 - Searching for bad behaviors and internals
- 0:54:14 - Deliberately training misaligned models
- 1:02:34 - Four year deadline
- 1:07:06 - What if it takes longer?
- 1:11:38 - The superalignment team and...
- 1:11:38 - ... governance
- 1:14:37 - ... other OpenAI teams
- 1:18:17 - ... other labs
- 1:26:10 - Superalignment team logistics
- 1:29:17 - Generalization
- 1:43:44 - Complementary research
- 1:48:29 - Why is Jan optimistic?
- 1:58:32 - Long-term agency in LLMs?
- 2:02:44 - Do LLMs understand alignment?
- 2:06:01 - Following Jan's research
The transcript: axrp.net/episode/2023/07/27/episode-24-superalignment-jan-leike.html
Links for Jan and OpenAI:
- OpenAI jobs: openai.com/careers
- Jan's substack: aligned.substack.com
- Jan's twitter: twitter.com/janleike
Links to research and other writings we discuss:
- Introducing Superalignment: openai.com/blog/introducing-superalignment
- Let's Verify Step by Step (process-based feedback on math): arxiv.org/abs/2305.20050
- Planning for AGI and beyond: openai.com/blog/planning-for-agi-and-beyond
- Self-critiquing models for assisting human evaluators: arxiv.org/abs/2206.05802
- An Interpretability Illusion for BERT: arxiv.org/abs/2104.07143
- Language models can explain neurons in language models https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
- Our approach to alignment research: openai.com/blog/our-approach-to-alignment-research
- Training language models to follow instructions with human feedback (aka the Instruct-GPT paper): arxiv.org/abs/2203.02155
By Daniel Filan4.4
88 ratings
Recently, OpenAI made a splash by announcing a new "Superalignment" team. Lead by Jan Leike and Ilya Sutskever, the team would consist of top researchers, attempting to solve alignment for superintelligent AIs in four years by figuring out how to build a trustworthy human-level AI alignment researcher, and then using it to solve the rest of the problem. But what does this plan actually involve? In this episode, I talk to Jan Leike about the plan and the challenges it faces.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
Episode art by Hamish Doodles: hamishdoodles.com/
Topics we discuss, and timestamps:
- 0:00:37 - The superalignment team
- 0:02:10 - What's a human-level automated alignment researcher?
- 0:06:59 - The gap between human-level automated alignment researchers and superintelligence
- 0:18:39 - What does it do?
- 0:24:13 - Recursive self-improvement
- 0:26:14 - How to make the AI AI alignment researcher
- 0:30:09 - Scalable oversight
- 0:44:38 - Searching for bad behaviors and internals
- 0:54:14 - Deliberately training misaligned models
- 1:02:34 - Four year deadline
- 1:07:06 - What if it takes longer?
- 1:11:38 - The superalignment team and...
- 1:11:38 - ... governance
- 1:14:37 - ... other OpenAI teams
- 1:18:17 - ... other labs
- 1:26:10 - Superalignment team logistics
- 1:29:17 - Generalization
- 1:43:44 - Complementary research
- 1:48:29 - Why is Jan optimistic?
- 1:58:32 - Long-term agency in LLMs?
- 2:02:44 - Do LLMs understand alignment?
- 2:06:01 - Following Jan's research
The transcript: axrp.net/episode/2023/07/27/episode-24-superalignment-jan-leike.html
Links for Jan and OpenAI:
- OpenAI jobs: openai.com/careers
- Jan's substack: aligned.substack.com
- Jan's twitter: twitter.com/janleike
Links to research and other writings we discuss:
- Introducing Superalignment: openai.com/blog/introducing-superalignment
- Let's Verify Step by Step (process-based feedback on math): arxiv.org/abs/2305.20050
- Planning for AGI and beyond: openai.com/blog/planning-for-agi-and-beyond
- Self-critiquing models for assisting human evaluators: arxiv.org/abs/2206.05802
- An Interpretability Illusion for BERT: arxiv.org/abs/2104.07143
- Language models can explain neurons in language models https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
- Our approach to alignment research: openai.com/blog/our-approach-to-alignment-research
- Training language models to follow instructions with human feedback (aka the Instruct-GPT paper): arxiv.org/abs/2203.02155

26,371 Listeners

2,426 Listeners

1,083 Listeners

107 Listeners

112,356 Listeners

210 Listeners

9,793 Listeners

89 Listeners

489 Listeners

5,473 Listeners

132 Listeners

16,106 Listeners

97 Listeners

209 Listeners

133 Listeners