
Sign up to save your podcasts
Or
Reinforcement Learning from Human Feedback, or RLHF, is one of the main ways that makers of large language models make them 'aligned'. But people have long noted that there are difficulties with this approach when the models are smarter than the humans providing feedback. In this episode, I talk with Scott Emmons about his work categorizing the problems that can show up in this setting.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
The transcript: https://axrp.net/episode/2024/06/12/episode-33-rlhf-problems-scott-emmons.html
Topics we discuss, and timestamps:
0:00:33 - Deceptive inflation
0:17:56 - Overjustification
0:32:48 - Bounded human rationality
0:50:46 - Avoiding these problems
1:14:13 - Dimensional analysis
1:23:32 - RLHF problems, in theory and practice
1:31:29 - Scott's research program
1:39:42 - Following Scott's research
Scott's website: https://www.scottemmons.com
Scott's X/twitter account: https://x.com/emmons_scott
When Your AIs Deceive You: Challenges With Partial Observability of Human Evaluators in Reward Learning: https://arxiv.org/abs/2402.17747
Other works we discuss:
AI Deception: A Survey of Examples, Risks, and Potential Solutions: https://arxiv.org/abs/2308.14752
Uncertain decisions facilitate better preference learning: https://arxiv.org/abs/2106.10394
Invariance in Policy Optimisation and Partial Identifiability in Reward Learning: https://arxiv.org/abs/2203.07475
The Humble Gaussian Distribution (aka principal component analysis and dimensional analysis): http://www.inference.org.uk/mackay/humble.pdf
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!: https://arxiv.org/abs/2310.03693
Episode art by Hamish Doodles: hamishdoodles.com
4.4
88 ratings
Reinforcement Learning from Human Feedback, or RLHF, is one of the main ways that makers of large language models make them 'aligned'. But people have long noted that there are difficulties with this approach when the models are smarter than the humans providing feedback. In this episode, I talk with Scott Emmons about his work categorizing the problems that can show up in this setting.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
The transcript: https://axrp.net/episode/2024/06/12/episode-33-rlhf-problems-scott-emmons.html
Topics we discuss, and timestamps:
0:00:33 - Deceptive inflation
0:17:56 - Overjustification
0:32:48 - Bounded human rationality
0:50:46 - Avoiding these problems
1:14:13 - Dimensional analysis
1:23:32 - RLHF problems, in theory and practice
1:31:29 - Scott's research program
1:39:42 - Following Scott's research
Scott's website: https://www.scottemmons.com
Scott's X/twitter account: https://x.com/emmons_scott
When Your AIs Deceive You: Challenges With Partial Observability of Human Evaluators in Reward Learning: https://arxiv.org/abs/2402.17747
Other works we discuss:
AI Deception: A Survey of Examples, Risks, and Potential Solutions: https://arxiv.org/abs/2308.14752
Uncertain decisions facilitate better preference learning: https://arxiv.org/abs/2106.10394
Invariance in Policy Optimisation and Partial Identifiability in Reward Learning: https://arxiv.org/abs/2203.07475
The Humble Gaussian Distribution (aka principal component analysis and dimensional analysis): http://www.inference.org.uk/mackay/humble.pdf
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!: https://arxiv.org/abs/2310.03693
Episode art by Hamish Doodles: hamishdoodles.com
26,462 Listeners
2,395 Listeners
1,784 Listeners
298 Listeners
105 Listeners
4,142 Listeners
89 Listeners
287 Listeners
88 Listeners
417 Listeners
243 Listeners
75 Listeners
60 Listeners
146 Listeners
123 Listeners