Share biophon - Geschichten aus Biowissenschaft und Forschung
Share to email
Share to Facebook
Share to X
By biophon
The podcast currently has 45 episodes available.
50% ihrer Kalorien bezieht die Weltbevölkerung aus nur drei Gräsern: Weizen, Mais, und Reis. Vor ungefähr 10 000 Jahren waren es die Vorfahren dieser Pflanzen, die unsere steinzeitlichen Ahnen zur Sesshaftigkeit erzogen, und sich im Gegenzug domestizieren liesen. Seitdem dreht sich unsere Zivilisation um die Kultivierung von Pflanzen. Höchste Zeit also, dass wir uns die ganze Sache im zweiten Teil unserer Miniserie über Domestikation einmal genauer anschauen! Was hat es zum Beispiel mit Apikaldominanz, Ährenbrüchigkeit und Ähnlichem zu tun, und warum kommt keine Getreidesorte ohne diese Eigenschaft aus? Warum wurden einige Pflanzen domestiziert, und andere nicht? Und aus welcher Ecke der Welt stammt eigentlich welches Gewächs? Wie wichtig es für uns ist, dass die Menschheit und ihre grünen Schützlinge weiterhin zusammen wachsen, zeigt uns nicht nur eine Episode aus der Sowjetunion, sondern auch die aktuellen Debatten um Klimawandel und Gentechnik. In diesem Sinne - wir sind, was wir essen, aber wir essen auch, was wir sind: Außerordentlich domestiziert.
Quellen
Crow, James F. "NI Vavilov, martyr to genetic truth." Genetics 134.1 (1993): 1.
GAG155: Trofim Lysenko und der Lysenkoismus der Sowjetunion
Crop Domestication: why only wheat, maize and rice? Talk by Dr. Mark Chapman for the Gatsby Plant Science Education Programme, 02. 11.2022
Doebley, John, Adrian Stec, and Lauren Hubbard. "The evolution of apical dominance in maize." Nature 386.6624 (1997): 485-488.
Fang, Zhou, and Peter L. Morrell. "Domestication: Polyploidy boosts domestication." Nature plants 2.8 (2016): 1-2.
Piperno, Dolores R., et al. "Experimenting with domestication: Understanding macro-and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments." Journal of Archaeological Science 108 (2019): 104970. Bildquelle für
V. Nanjundiah, R. Geeta, and V. V. Suslov. "Revisiting NI vavilov’s “The law of homologous series in Variation”(1922)." Biological Theory 17.4 (2022): 253-262.
"Von Kreuzen bis Genome Editing: Die Verfahren der Pflanzenzüchtung im Überblick", https://www.transgen.de/, 06.12.2023
Bildquellen:
Nikolai Vavilov, Russian botanist and geneticist, Public domain, Via Wikimedia commons
Soviet pseudoscientist Trofim Denisovich Lysenko , Public domain, Via Wikimedia commons
Teosinte and Maize, Figure 1 aus Doebley, John, et al. "Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize." Proceedings of the National Academy of Sciences 87.24 (1990): 9888-9892.
Polyploidy, Figure 1 aus Fang, Zhou, and Peter L. Morrell (siehe Quellen)
Apikaldominanz in Teosinte, Figure 5 aus P
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Pflanze „frisst“ Sonne, Tier frisst Pflanze, Tier frisst Tier. So kennen wir das, so soll das sein. Dass die Biologie so ist, wie sie ist und sich nicht an solche Regeln hält irritierte schon Carl von Linné, seines Zeichens Biologie-Superstar, vor über 250 Jahren. Erst 100 Jahre später wagte sich Charles Darwin — ebenfalls Biologie-Superstar — wissenschaftlich fundiert zu postulieren: „Pflanze frisst Tier“ ist sehr wohl möglich. Mittlerweile zweifelt keiner mehr daran, dass es Pflanzen gibt, die sich von Tieren ernähren. Aber warum ist das so? Was bringt einen Organismus, der seine Energie aus der Fotosynthese gewinnt dazu, aufwendige Fangmethoden zu entwickeln, um Tiere zu erbeuten? Wir tauchen in dieser Folge tief in die Grundlagen des Stoffwechsels ein und beleuchten die Biologie der faszinierenden fleischfressenden Pflanzen, die viele von uns sicherlich schon im Kinderzimmer stehen hatten. Warum hinter diesen Organismen mehr steckt als ein nettes Geschenk für Kinder, welche grandiosen Fangmethoden sie entwickelt haben und inwiefern von ihnen Gefahr für uns ausgeht: Darum gehts in Folge bp42.
Quellen
Spencer, Edmund (26–28 April 1874). "Crinoida Dajeeana, The Man-eating Tree of Madagascar" (PDF). New York World.
Rost, K., & Schauer, R. (1977). Physical and chemical properties of the mucin secreted by Drosera capensis. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)88783-X
Catapulting Tentacles in a Sticky Carnivorous Plant (Videos der Katapult-Tentakel): https://naturedocumentaries.org/5072/catapulting-tentacles-carnivorous-plant-hartmeyer-2012/
Suda, H. et al. (2020). Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants. https://doi.org/10.1038/s41477-020-00773-1
Forterre, Y. et al. (2005). How the Venus flytrap snaps. Nature. https://doi.org/10.1038/nature03185
Chase, M. W. et al. (2009). Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory. Botanical Journal of the Linnean Society. https://doi.org/10.1111/j.1095-8339.2009.01014.x
Cross, A. T. et al. (2022). Capture of mammal excreta by Nepenthes is an effective heterotrophic nutrition strategy. Annals of Botany. https://doi.org/10.1093/aob/mcac134
Bildquellen
Coverbild: NoahElhardt, Drosera capensis bend, CC BY-SA 3.0
Sonnentau: Denis Barthel, DroseraPeltataLamina, CC BY-SA 3.0
Kannenpflanze: Alex Lomas, Nepenthes maxima × sanguinea (2943627683), CC BY 2.0
Saugfallen: Liliane ROUBAUDI, Utricularia australis traps (03), CC BY-SA 2.0 FR
Venusfliegenfalle: Tippitiwichet, Venus Flytrap 020, CC BY 2.0
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Der Begründer der modernen Paläontologie war ein Hai. Besser gesagt: sein Zahn. Noch besser gesagt: anhand eines Haifischzahns gelang es dem Dänen Nicolaus Steno im Jahr 1666 zu zeigen, wie Fossilien entstehen. Diese Rolle hätte schwerlich einer passenderen Tierart zufallen können: immerhin leben Haie seit mindestens 400 Mio Jahren auf der Erde und haben alle bisherigen Massensterben überlebt. Höchste Zeit, dass wir mal einen Blick auf diese Meeresbewohner werfen! In dieser Folge sortieren wir Haie und "normale" Fische auf den Stammbaum ein und besprechen deren grundsätzliche Eigenschaften und Unterschiede. Außerdem widmen wir uns einem evolutionsbiologischen Disput und lernen, dass selbst in der Paläontologie nichts in Stein gemeißelt ist. Abgerundet wird die ganze Sache mit einer unvollständigen Liste der Hairekorde. Man merke: ein Quiz wird schwerer, wenn Fragen und Antwortmöglichkeiten nicht in der gleichen Reihenfolge sortiert sind.
Quellen
Fossils and the Birth of Paleontology: Nicholas Steno, University of Bergerley, 02.03.2023
http://www.elasmo-research.org/education/evolution/evol_s_predator.htm
Sibert, Elizabeth C., and Leah D. Rubin (2021), "An early Miocene extinction in pelagic sharks." Science. DOI: 10.1126/science.aaz3549. Comments (10.1126/science.abj8723, 10.1126/science.abk0632) and answers (10.1126/science.abj9522, 10.1126/science.abk1733)
Bildquellen
Coverbild by Lucas Langer
Haifischzähne und Glossopetrae:
Steno Lamiae Piscis, Nicolaus Steno, Public domain, via Wikimedia Commons
Megalodon:
Carcharodon megalodon size compasison with man, Dinosaur Zoo, CC BY-SA 3.0, via Wikimedia Commons
Weißer Hai:
Great White Shark, Elias Levy, CC BY 2.0 , via Wikimedia Commons
Hammerhai:
Spyrna mokarran at georgia, Josh Hallett from Winter Haven, FL, USA, CC BY 2.0, via Wikimedia Commons
Walhai:
Whale shark, Rhincodon typus, at Daedalus in the Egyptian Red Sea, Derek Keats from Johannesburg, South Africa, CC BY 2.0, via Wikimedia Commons
Schokoladenhai:
Dalatis licha, Gervais et Boulart, Public domain, via Wikimedia Commons
Zigarrenhai:
Isistius brasiliensis front view, NOAA Photo Library, CC BY 2.0, via Wikimedia Commons
Zwerg-Laternenhai:
Etmopterus perryi, Chip Clark/Smithsonian Institution, Public domain, via Wikimedia Commons
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Manche Dinge dauern ein bisschen länger. Das gilt — offensichtlich hin und wieder — für die Veröffentlichung neuer biophon-Folgen, wie auch für die Dinge, die in dieser Folge besprochen werden. Um aus einem Wolf einen Hund zu machen benötigt die Menschheit zum Beispiel zwischen etwa 15.000 und 135.000 Jahren, je nachdem, wen man fragt. Aber was passiert dabei eigentlich? Wie wird ein wildes Tier, welches dem Menschen nicht wirklich nahesteht zum „besten Freund“ des Menschen? Der Prozess, der dazu führt, wird Domestikation genannt und hat alle diejenigen Tiere und Pflanzen hervorgebracht, die wir heutzutage als Haustiere und Kulturpflanzen bezeichnen. Mit ihren wilden Vorfahren haben diese Arten meist nicht mehr viel zu tun. Wir schauen uns in dieser Folge einmal genauer an, was passiert, wenn Teosinte zu Mais, Wolf (oder Fuchs) zu Hund und Hund zu Dingo wird. Dabei unternehmen wir — neben den üblichen Ausflügen in die Molekularbiologie — auch einige Exkursionen in die Verhaltensbiologie und lernen sibirische Langzeitexperimente kennen und diskutieren, was historische Päpste mit Kaninchenföten zu tun haben, oder aber auch nicht.
Quellen
Natanaelsson, Christian, et al. (2006). „Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery." BMC genetics. https://doi.org/10.1186/1471-2156-7-45
Parker, Heidi G., et al. (2004). „Genetic structure of the purebred domestic dog." Science. https://doi.org/10.1126/science.1097406
Pang, Jun-Feng, et al. (2009). „mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves." Molecular biology and evolution. https://doi.org/10.1093/molbev/msp195
Savolainen, Peter, et al. (2002). „Genetic evidence for an East Asian origin of domestic dogs." Science. https://doi.org/10.1126/science.1073906
Druzhkova, Anna S., et al. (2013). „Ancient DNA analysis affirms the canid from Altai as a primitive dog." PloS one. https://doi.org/10.1371/journal.pone.0057754
Irving-Pease, Evan K., et al. (2018). „Rabbits and the specious origins of domestication." Trends in ecology & evolution. https://doi.org/10.1016/j.tree.2017.12.009
https://www.spiegel.de/wissenschaft/natur/domestizierung-forscher-zuechten-zahme-fuechse-a-1209235.html
Field, Matt A., et al. (2022). „The Australian dingo is an early offshoot of modern breed dogs." Science Advances. https://doi.org/10.1126/sciadv.abm5944
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Es passiert nicht selten, dass bahnbrechende Endteckungen eher zufällig zu Stande kommen. Um eine davon geht es in dieser Folge: Im Zuge von Versuchen, die erforschten, wie der zerstörerische Einfluss radioaktiver Strahlung auf den Organismus zu verhindern sei, wurden 1961 blutbildende (hämatopoietische) Stammzellen entdeckt. Und das war eine große Sache: hatte man zwar schon seit dem späten 19. Jahrhundert eine Idee davon, dass es Stammzellene geben müsste, und diese auch schon in der befruchteten Eizelle identifiziert, fehlten bislang die Nachweise für Stammzellen im erwachsenen Körper: sogenannte somatische Stammzellen. Heute wissen wir, dass diese Alleskönner der Ursprung vieler sich ständig regenerierender Gewebe sind, auch in unserem Körper. Wo genau diese Dinger sitzen, was sie können, und warum genau Stammzellen nahe an die Unsterblichkeit herankommen, klären wir in der heutigen Sammelsuriumsfolge an losen Enden.
Quellen
Ford, C., et al. . (1956): "Cytological Identification of Radiation-Chimæras". Nature . https://doi.org/10.1038/177452a0
Colleen MacPherson, 2015: " The accidental discovery of stem cells", University of Saskatchewan, News
Till, James E., and Ernest A. McCulloch. (1961): "A direct measurement of the radiation sensitivity of normal mouse bone marrow cells." Radiation research. https://doi.org/10.2307/3570892
Becker, Andrew J., Ernest A. McCulloch, and James E. Till. (1963): "Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells." Nature . https://hdl.handle.net/1807/2779
Sender, Ron, and Ron Milo. (2021): "The distribution of cellular turnover in the human body." Nature medicine. https://doi.org/10.1038/s41591-020-01182-9
Cliffe, Laura J., et al. (2005): "Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion." Science. https://doi/10.1126/science.1108661
Zhao, Andong, Hua Qin, and Xiaobing Fu. (2016): "What determines the regenerative capacity in animals?." Bioscience. https://doi.org/10.1093/biosci/biw079
Bildquellen
Cover: Embryonic Stem Cells, CC BY 2.5, via Wikimedia Commons
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Die Idee zu biophon wurde vermutlich bei einem Glas Wein geboren, und sicher spielten alkoholische Getränke bei vielen großen und kleinen Ideen eine Rolle. Bier, Wein und Spirituosen sind in nahezu allen Kulturen der Welt verbreitet — und das schon länger als man denkt. Bier wurde bereits gebraut, bevor der Mensch begonnen hat, Pflanzen zu kultivieren, Brot zu backen und ein sesshaftes Leben zu führen. Aber wie entsteht Bier eigentlich? Wie kommt es, dass Ethanol als kleinster gemeinsamer Nenner aller alkoholischen Getränke eine solche Wirkung auf uns hat, dass wir bereits seit der Steinzeit große Mengen davon konsumieren? Wir gehen der Biologie, der Chemie und der Geschichte des Alkohols auf den Grund und schauen einmal genauer darauf, warum Hefen Ethanol produzieren, wie besagter Alkohol in unserem Körper wirkt und wie unsere Zellen ihn wieder los werden. Die Folge ist ein bisschen länger — gönnt Euch dazu also gern ein Glas eines Getränktes Eurer Wahl, dessen Alkoholgehalt selbstverständlich Euch überlassen ist. Es sei denn, Ihr hört uns im Auto. Dann bitte auf jeden Fall 0,0%.
Quellen
Liu, L. (2018). Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2018.08.008
Singh, A. K. et al. (2007). Effects of chronic ethanol drinking on the blood–brain barrier and ensuing neuronal toxicity in alcohol-preferring rats subjected to intraperitoneal LPS injection. Alcohol & Alcoholism. https://doi.org/10.1093/alcalc/agl120
Bildquellen
Titelbild: Luis Ezcurdia, Sabores Uruguayos (195693485), CC BY-SA 3.0
Stibnit: DerHexer, Wikimedia Commons, CC-by-sa 4.0, Harvard Museum of Natural History. Stibnite. (Iyo) Ehime, Shikoku, Japan (DerHexer) 2012-07-20, CC BY-SA 4.0
Saccharomyces cerevisiae: Mogana Das Murtey and Patchamuthu Ramasamy, Saccharomyces cerevisiae SEM, CC BY-SA 3.0
Alkoholkonsum: World Health Organization, graphics uploaded by Furfur, Alcohol consumption 2005, CC BY-SA 3.0
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
85% der Befragten würden, müssten sie zwischen Sehen, Hören und Riechen auswählen, ihren Geruchssinn abgeben. Auch Erik sieht das so und spielt damit ganz ausgezeichnet mit im Setup zur heutigen Folge. Denn um ihn soll es gehen, den Geruchssinn, den am wenigsten geschätzten, am wenigsten benötigten unserer menschlichen fünf Sinne. Oder wie seht ihr das? Auch wenn Menschen nicht wie viele unserer vierbeinigen Freunde in einer geruchsdominierten Welt leben, ist Riechen doch eng mit unserem Empfinden, unserer Orientierung, und unseren Erinnerungen verwoben. Wer hat nicht schon einmal erlebt, dass ein Duft ausreicht, um Erinnerungen an die Kindheit, den letzten Urlaub oder das Zimmer der Großmutter lebendig werden zu lassen? Diese Folge stellt sich die Aufgabe, zu erklären, wie Riechen funktioniert, und warum und wie das Ganze in unserem Gedächtnis herumwurschtelt.
Und für die, die auf kürzere Zusammenfassungen stehen:
Boomer. Aktionspotentiale. Blutpferde. Proust.
Quellen
Herz, Rachel S., and Martha R. Bajec. (2022)"Your money or your sense of smell? A comparative analysis of the sensory and psychological value of olfaction." Brain Sciences . DOI: 10.3390/brainsci12030299
Fifth Sense.org: Psychology and Smell, August 2022
Fanger, P. Ole. (1988) "Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors." Energy and buildings . DOI: https://doi.org/10.1016/0378-7788(88)90051-5
Niimura, Y. et al.(2014). "Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals." Genome research. DOI: 10.1101/gr.169532.113
Khamsi, Roxanne. (2022) "Unpicking the link between smell and memories." Nature , Outlook. DOI: https://doi.org/10.1038/d41586-022-01626-x
Pashkovski, Stan L., et al. (2020) "Structure and flexibility in cortical representations of odour space." Nature. DOI: https://doi.org/10.1038/s41586-020-2451-1
Poo, Cindy, et al. (2022) "Spatial maps in piriform cortex during olfactory navigation." Nature . DOI: https://doi.org/10.1038/s41586-021-04242-3
Bildquellen
Cover: Asian Elephant trunk, Greg George, CC BY-SA 2.0, via Wikimedia Commons
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Stellt Euch vor, Ihr lauft nichtsahnend durch weite südamerikanische Graslandschaften, als Ihr plötzlich hört, dass sich etwas großes, schnelles nähert. Als Ihr Euch umdreht seht Ihr den Verursacher der Geräusche: ein massiver Kopf mit 40 cm langem Schnabel, kräftige Beine, fast drei Meter hoch. Ihr beginnt zu verstehen, warum man diesen Vogel, der mit 50 Kilometern pro Stunde auf Euch zu rennt sehr viel später unter dem Trivialnamen „Terrorvogel“ kennt… Was wie Science-Fiction klingt war im prähistorischen Südamerika vor Millionen von Jahren Realität für zahlreiche kleinere Säugetiere, die sich mit den damaligen Top-Prädatoren in ihrem Ökosystem konfrontiert sahen. Wir begeben uns in dieser Folge auf eine Reise durch die Zeit und stellen Euch die Biologie dieser faszinierenden Raubvögel vor, die trotz ihrer beeindruckenden Körpermaße und ihrem Platz an den Spitzen der Nahrungsketten für Millionen von Jahren heute eher unbekannt sind. Wir erklären Euch, wie sie lebten, was sie fraßen und woher wir das alles wissen. Und auch wenn der Gedanke „na, bloß gut, dass die ausgestorben sind…“ naheliegt: Nicht ganz. Etwas hat überlebt…
Quellen:
Alvarenga, H. M., & Höfling, E. (2003). Systematic revision of the Phorusrhacidae (Aves: Ralliformes). Papéis Avulsos de Zoologia. https://doi.org/10.1590/S0031-10492003000400001
Chiappe, L. M., & Bertelli, S. (2006). Skull morphology of giant terror birds. Nature. https://doi.org/10.1038/443929a
Degrange, F. J., Tambussi, C. P., Moreno, K., Witmer, L. M., & Wroe, S. (2010). Mechanical analysis of feeding behavior in the extinct “terror bird” Andalgalornis steulleti (Gruiformes: Phorusrhacidae). PLoS one. https://doi.org/10.1371/journal.pone.0011856
Blanco, R. E., & Jones, W. W. (2005). Terror birds on the run: a mechanical model to estimate its maximum running speed. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2005.3133
Bildquellen:
Coverbild: Nestor Galina, Fororraco, CC-BY-2.0, via flickr.com (Ausschnitt)
Kelleken-Skelett: ケラトプスユウタ, Kelenken skeleton, CC BY-SA 4.0
Andalgalornis: John.Conway, Andalgalornis jconway, CC BY-SA 3.0
Phorusrhacos Lebendrekonstruktion: Frank Vincentz, Manacor - Ma-15 - Oliv-art park 16 ies, CC BY-SA 3.0
Seriema: Halley Pacheco de Oliveira, Seriema de Perna Vermelha II,
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
So unterschiedlich die Menschen in allen Teilen der Welt auch leben, in einer Sache sind sich die Kulturen einig: Wir stehen auf Koffein. Ob Kaffee, Tee, oder Mate: koffeinhaltige Nahrungsmittel erfreuen sich allseits großer Beliebtheit und haben sich längst auf dem ganzen Globus in unsere Morgenroutinen geschlichen. Aber warum ist das eigentlich so? Was macht dieses Zeug mit uns, dass wir die Finger nicht davon lassen können? In dieser Folge packen wir unsere allmorgendliche Tasse Kaffe buchstäblich an der Wurzel und lernen, dass Koffein mal als pflanzeneigenes Insektenschutzmittel angefangen hat. Und zwar so erfolgreich, dass es in verschiedenen Pflanmzenfamilien gleich mehrmals evolviert ist. Schon hier zeigt sich: die Dosis macht das Gift. Denn der Koffeingehalt in manchen Pflanzen ist so gering, dass er auf Bestäuber eher einen anziehenden Effekt hat. Und damit wären wir wieder bei uns, und der Frage: sind wir nur in die Irre geführte Honigbienen? Was Koffein in unserem Hirn anstellt, wann zuviel zuviel ist, und was die Tasse Kaffe am morgen noch so alles können könnte - das erfahrt ihr hier aus garantiert koffeinhaltiger Recherche.
Quellen
"That quick morning coffee might lead to enduring brain changes", Nature Research Highlihghts, online, 31.05.2022
Paiva, Isabel, et al. "Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription." The Journal of Clinical Investigation, 2022
"Kaffee in Zahlen", Kaffereport 2021, Tschibo
Denoeud, France, et al. "The coffee genome provides insight into the convergent evolution of caffeine biosynthesis." science, 2014
Huang, Ruiqi, et al. "Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes." Proceedings of the National Academy of Sciences , 2016
Nathanson, James A. "Caffeine and related methylxanthines: possible naturally occurring pesticides." Science , 1984
Wright, G. A., et al. "Caffeine in floral nectar enhances a pollinator's memory of reward." Science , 2013
Qasim, H.: "How does caffeine keep us awake?" TedEd Lessons, online, 17.07.2017
Clark, I. et al. "Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials." Sleep medicine reviews , 2017
Borota, Daniel, et al. "Post-study caffeine administration enhances memory consolidation in humans." Nature neuroscience . 2014
Paluska, Scott A. "Caffeine and exercise." Current sports medicine reports, 2003
Bildquellen
Coffea arabica, Camelia sinensis, Paullinia cupana, Ilex paraguariensis aus "Köhlers Medizinal Pflanzen", Theobroma cacao and Citrus limetta, alle via Wikimedia commons
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
Was 1934 im Westen von Deutschland ganz bewusst passiert, geschieht elf Jahre später im Osten versehentlich: Nordamerikanische Kleinbären gelangen in die Freiheit und fühlen sich wohl. So wohl, dass bereits nach wenigen Jahren bemerkt wird, dass das ein Problem sein könnte. Diese Geschichte gipfelt 2016 in der Aufnahme von Waschbären in der Liste der in der Europäischen Union unerwünschten Arten und damit in der gezielten Bekämpfung der Ausbreitung der Tiere in Europa. Zur Zeit der Ankunft der Waschbären in Europa verschlägt es die Braune Nachtbaumnatter nach Guam und die Aga-Kröte nach Australien - heute muss der Mensch hilflos zusehen, wie die von ihm eingeschleppten Arten in ihren neuen Lebensräumen so erhebliche Schäden anrichten, dass die Existenz der Ökosysteme auf dem Spiel steht. Aber warum eigentlich? Was kann passieren, wenn Arten mit oder ohne menschliches Zutun in neue Lebensräume verbracht werden und sich dort wohl fühlen? Wir gehen dem Phänomen der biologischen Invasion auf den Grund und erklären, warum man einige Tiere und Pflanzen besser dort lässt, wo sie hingehören und was passieren kann, wenn man es nicht tut. Dabei stellen wir in Deutschland gebietsfremde und/oder invasive Arten vor und erläutern deren Auswirkungen auf die hiesigen Ökosysteme - auf dass Ihr Euer Gepäck bei der nächsten Reise noch einmal genauer auf blinde Passagiere untersucht.
Quellen
Brown, P. M. et al. (2011). The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. https://doi.org/10.1007/s10526-011-9379-1
Seebens, H. et al. (2013). The risk of marine bioinvasion caused by global shipping. Ecology letters. https://doi.org/10.1111/ele.12111
https://www.sueddeutsche.de/wissen/insektenbekaempfung-gib-der-termite-zucker-1.4051267
https://www.lokalkompass.de/duesseldorf/c-natur-garten/koe-papageien-schwaermen-aus_a1073790
Emde, S., et al. (2016). Cooling water of power plant creates “hot spots” for tropical fishes and parasites. Parasitology research. https://doi.org/10.1007/s00436-015-4724-4
Bildquellen
Coverbild: Animals of the Swamp: Raccoons, pedrik, CC BY 2.0, via Flickr
Halsbandsittich: Clément Bardot, Perruche à collier (Psittacula krameri), CC BY-SA 4.0
Gillbach & Kraftwerk Niederaußem: Tetris L, Gillbach am Kraftwerk Niederaußem (3), CC BY-SA 3.0
Grauhörnchen: Diliff, Eastern Grey Squirrel in St James's Park, London - Nov 2006 edit, CC BY-SA 3.0
Aga-Kröte: Fotograf: Factumquintus, Aga kröte Bufo marinus, CC B
Support the show
--------------
Wer uns unterstützen möchte (Danke!), hat hier die Möglichkeit dazu: support.biophonpodcast.de
The podcast currently has 45 episodes available.
39 Listeners
190 Listeners
19 Listeners
21 Listeners
292 Listeners