
Sign up to save your podcasts
Or


My guest in this episode is Dr. Ernest Chan, founder of QTS Capital Management.
Investor, researcher, and educator, Ernie is well-known for his blog – which he has been publishing since 2006 – as well as the several books he has authored, including Quantitative Trading, Algorithmic Trading, and Machine Trading.
Our conversation meets at the intersection of tail risk hedging and machine learning. Ernie has a long history with machine learning, having first applied it on Wall Street in the late 1990s. After striking out on his own in 2006, he abandoned it due to the overfitting issues he believed it suffered.
In recent years, however, Ernie has re-adopted machine learning, believing that modern approaches help circumvent the overfitting problems and create robust, reliable models.
Specifically, Ernie applies machine learning as a risk-management layer on QTS’s Tail Reaper program, an intraday trend-following model designed to profit in periods of crisis. We discuss why such a program can be effective as a tail hedge and how the risk management layer can potentially help reduce the premium bleed typically associated with tail programs.
For listeners keen on understanding modern applications of machine learning, this is not one to miss.
By Corey Hoffstein4.9
228228 ratings
My guest in this episode is Dr. Ernest Chan, founder of QTS Capital Management.
Investor, researcher, and educator, Ernie is well-known for his blog – which he has been publishing since 2006 – as well as the several books he has authored, including Quantitative Trading, Algorithmic Trading, and Machine Trading.
Our conversation meets at the intersection of tail risk hedging and machine learning. Ernie has a long history with machine learning, having first applied it on Wall Street in the late 1990s. After striking out on his own in 2006, he abandoned it due to the overfitting issues he believed it suffered.
In recent years, however, Ernie has re-adopted machine learning, believing that modern approaches help circumvent the overfitting problems and create robust, reliable models.
Specifically, Ernie applies machine learning as a risk-management layer on QTS’s Tail Reaper program, an intraday trend-following model designed to profit in periods of crisis. We discuss why such a program can be effective as a tail hedge and how the risk management layer can potentially help reduce the premium bleed typically associated with tail programs.
For listeners keen on understanding modern applications of machine learning, this is not one to miss.

3,074 Listeners

589 Listeners

2,165 Listeners

1,874 Listeners

937 Listeners

797 Listeners

82 Listeners

215 Listeners

81 Listeners

99 Listeners

436 Listeners

276 Listeners

220 Listeners

383 Listeners

145 Listeners