
Sign up to save your podcasts
Or
Join Arize Co-Founder & CEO Jason Lopatecki, and ML Solutions Engineer, Sally-Ann DeLucia, as they discuss “Explaining Grokking Through Circuit Efficiency." This paper explores novel predictions about grokking, providing significant evidence in favor of its explanation. Most strikingly, the research conducted in this paper demonstrates two novel and surprising behaviors: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalization to partial rather than perfect test accuracy.
Find the transcript and more here: https://arize.com/blog/explaining-grokking-through-circuit-efficiency-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
Join Arize Co-Founder & CEO Jason Lopatecki, and ML Solutions Engineer, Sally-Ann DeLucia, as they discuss “Explaining Grokking Through Circuit Efficiency." This paper explores novel predictions about grokking, providing significant evidence in favor of its explanation. Most strikingly, the research conducted in this paper demonstrates two novel and surprising behaviors: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalization to partial rather than perfect test accuracy.
Find the transcript and more here: https://arize.com/blog/explaining-grokking-through-circuit-efficiency-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
1,281 Listeners
1,008 Listeners
475 Listeners
439 Listeners
295 Listeners
312 Listeners
196 Listeners
271 Listeners
92 Listeners
320 Listeners
106 Listeners
70 Listeners
397 Listeners
423 Listeners
31 Listeners