
Sign up to save your podcasts
Or


Join Arize Co-Founder & CEO Jason Lopatecki, and ML Solutions Engineer, Sally-Ann DeLucia, as they discuss “Explaining Grokking Through Circuit Efficiency." This paper explores novel predictions about grokking, providing significant evidence in favor of its explanation. Most strikingly, the research conducted in this paper demonstrates two novel and surprising behaviors: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalization to partial rather than perfect test accuracy.
Find the transcript and more here: https://arize.com/blog/explaining-grokking-through-circuit-efficiency-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
By Arize AI5
1313 ratings
Join Arize Co-Founder & CEO Jason Lopatecki, and ML Solutions Engineer, Sally-Ann DeLucia, as they discuss “Explaining Grokking Through Circuit Efficiency." This paper explores novel predictions about grokking, providing significant evidence in favor of its explanation. Most strikingly, the research conducted in this paper demonstrates two novel and surprising behaviors: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalization to partial rather than perfect test accuracy.
Find the transcript and more here: https://arize.com/blog/explaining-grokking-through-circuit-efficiency-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

301 Listeners

333 Listeners

227 Listeners

209 Listeners

200 Listeners

306 Listeners

93 Listeners

505 Listeners

135 Listeners

95 Listeners

151 Listeners

224 Listeners

602 Listeners

35 Listeners

39 Listeners