
Sign up to save your podcasts
Or
In this episode of the Epigenetics Podcast, we caught up with Ines Drinnenberg from Institute Curie to talk about her work on the formation of CenH3-deficient kinetochores.
The laboratory of Ines Drinneberg focuses on centromeres and how different strategies of centromere organization have evolved in different organisms. While most eukaryotes have monocentric chromosomes, where spindle attachment is restricted to a single chromosomal region resembling such classic X-shape like structures under the microscope, many lineages have evolved holocentric chromosomes where spindle microtubules attach along the entire length of the chromosome. The team was able to show the independent loss of CENH3/CENP-A in holocentric insects. Furthermore, the team focuses on how CenH3-deficient kinetochores form and were able to identify several conserved kinetochore components that emerged as a key component for CenH3-deficient kinetochore formation in Lepidoptera.
References
Drinnenberg, I. A., deYoung, D., Henikoff, S., & Malik, H. S. (2014). Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife, 3, e03676. https://doi.org/10.7554/eLife.03676
Molaro, A., & Drinnenberg, I. A. (2018). Studying the Evolution of Histone Variants Using Phylogeny. Methods in molecular biology (Clifton, N.J.), 1832, 273–291. https://doi.org/10.1007/978-1-4939-8663-7_15
Cortes-Silva, N., Ulmer, J., Kiuchi, T., Hsieh, E., Cornilleau, G., Ladid, I., Dingli, F., Loew, D., Katsuma, S., & Drinnenberg, I. A. (2020). CenH3-Independent Kinetochore Assembly in Lepidoptera Requires CCAN, Including CENP-T. Current biology : CB, 30(4), 561–572.e10. https://doi.org/10.1016/j.cub.2019.12.014
Senaratne, A. P., Muller, H., Fryer, K. A., Kawamoto, M., Katsuma, S., & Drinnenberg, I. A. (2021). Formation of the CenH3-Deficient Holocentromere in Lepidoptera Avoids Active Chromatin. Current biology : CB, 31(1), 173–181.e7. https://doi.org/10.1016/j.cub.2020.09.078
Vanpoperinghe, L., Carlier-Grynkorn, F., Cornilleau, G., Kusakabe, T., Drinnenberg, I. A., & Tran, P. T. (2021). Live-cell imaging reveals square shape spindles and long mitosis duration in the silkworm holocentric cells. microPublication biology, 2021, 10.17912/micropub.biology.000441. https://doi.org/10.17912/micropub.biology.000441
Related Episodes
The Role of Non-Histone Proteins in Chromosome Structure and Function During Mitosis (Bill Earnshaw)
Chromatin Profiling: From ChIP to CUT&RUN, CUT&Tag and CUTAC (Steven Henikoff)
In Vivo Nucleosome Structure and Dynamics (Srinivas Ramachandran)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: [email protected]
4.9
4242 ratings
In this episode of the Epigenetics Podcast, we caught up with Ines Drinnenberg from Institute Curie to talk about her work on the formation of CenH3-deficient kinetochores.
The laboratory of Ines Drinneberg focuses on centromeres and how different strategies of centromere organization have evolved in different organisms. While most eukaryotes have monocentric chromosomes, where spindle attachment is restricted to a single chromosomal region resembling such classic X-shape like structures under the microscope, many lineages have evolved holocentric chromosomes where spindle microtubules attach along the entire length of the chromosome. The team was able to show the independent loss of CENH3/CENP-A in holocentric insects. Furthermore, the team focuses on how CenH3-deficient kinetochores form and were able to identify several conserved kinetochore components that emerged as a key component for CenH3-deficient kinetochore formation in Lepidoptera.
References
Drinnenberg, I. A., deYoung, D., Henikoff, S., & Malik, H. S. (2014). Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife, 3, e03676. https://doi.org/10.7554/eLife.03676
Molaro, A., & Drinnenberg, I. A. (2018). Studying the Evolution of Histone Variants Using Phylogeny. Methods in molecular biology (Clifton, N.J.), 1832, 273–291. https://doi.org/10.1007/978-1-4939-8663-7_15
Cortes-Silva, N., Ulmer, J., Kiuchi, T., Hsieh, E., Cornilleau, G., Ladid, I., Dingli, F., Loew, D., Katsuma, S., & Drinnenberg, I. A. (2020). CenH3-Independent Kinetochore Assembly in Lepidoptera Requires CCAN, Including CENP-T. Current biology : CB, 30(4), 561–572.e10. https://doi.org/10.1016/j.cub.2019.12.014
Senaratne, A. P., Muller, H., Fryer, K. A., Kawamoto, M., Katsuma, S., & Drinnenberg, I. A. (2021). Formation of the CenH3-Deficient Holocentromere in Lepidoptera Avoids Active Chromatin. Current biology : CB, 31(1), 173–181.e7. https://doi.org/10.1016/j.cub.2020.09.078
Vanpoperinghe, L., Carlier-Grynkorn, F., Cornilleau, G., Kusakabe, T., Drinnenberg, I. A., & Tran, P. T. (2021). Live-cell imaging reveals square shape spindles and long mitosis duration in the silkworm holocentric cells. microPublication biology, 2021, 10.17912/micropub.biology.000441. https://doi.org/10.17912/micropub.biology.000441
Related Episodes
The Role of Non-Histone Proteins in Chromosome Structure and Function During Mitosis (Bill Earnshaw)
Chromatin Profiling: From ChIP to CUT&RUN, CUT&Tag and CUTAC (Steven Henikoff)
In Vivo Nucleosome Structure and Dynamics (Srinivas Ramachandran)
Contact
Epigenetics Podcast on Twitter
Epigenetics Podcast on Instagram
Epigenetics Podcast on Mastodon
Active Motif on Twitter
Active Motif on LinkedIn
Email: [email protected]
757 Listeners
4,208 Listeners
4,334 Listeners
32,136 Listeners
955 Listeners
11,937 Listeners
117 Listeners
10,070 Listeners
5,896 Listeners
2,933 Listeners
8,685 Listeners
31 Listeners
5,351 Listeners
50 Listeners