We prove a central limit theorem for linear triangular arrays under weak dependence conditions [1,3,4]. Our result is then applied to the study of dependent random variables sampled by a $Z$-valued transient random walk. This extends the results obtained by Guillotin-Plantard & Schneider [2]. An application to parametric estimation by random sampling is also provided. References: [1] Dedecker J., Doukhan P., Lang G., Leon J.R., Louhichi S. and Prieur C. (2007). Weak dependence: With Examples and Applications. Lect. notes in Stat. 190. Springer, XIV. [2] N. Guillotin-Plantard and D. Schneider (2003). Limit theorems for sampled dynamical systems. Stochastic and Dynamics 3, 4, p. 477-497. [3] M. Peligrad and S. Utev (1997). Central limit theorem for linear processes. Ann. Probab. 25, 1, p. 443-456. [4] S. A. Utev (1991). Sums of random variables with $varphi$-mixing. Siberian Advances in Mathematics 1, 3, p. 124-155. Clémentine PRIEUR. Université de Toulouse 1. Document associé : support de présentation : http://epi.univ-paris1.fr/servlet/com.univ.collaboratif.utils.LectureFichiergw?CODE_FICHIER=1207750339872 (pdf) Ecouter l'intervention : Bande son disponible au format mp3 Durée : 33 mn