
Sign up to save your podcasts
Or
It’s been an exciting couple weeks for GenAI! Join us as we discuss the latest research from OpenAI and Anthropic. We’re excited to chat about this significant step forward in understanding how LLMs work and the implications it has for deeper understanding of the neural activity of language models. We take a closer look at some recent research from both OpenAI and Anthropic. These two recent papers both focus on the sparse autoencoder--an unsupervised approach for extracting interpretable features from an LLM. In "Extracting Concepts from GPT-4," OpenAI researchers propose using k-sparse autoencoders to directly control sparsity, simplifying tuning and improving the reconstruction-sparsity frontier. In "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet," researchers at Anthropic show that scaling laws can be used to guide the training of sparse autoencoders, among other findings.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
It’s been an exciting couple weeks for GenAI! Join us as we discuss the latest research from OpenAI and Anthropic. We’re excited to chat about this significant step forward in understanding how LLMs work and the implications it has for deeper understanding of the neural activity of language models. We take a closer look at some recent research from both OpenAI and Anthropic. These two recent papers both focus on the sparse autoencoder--an unsupervised approach for extracting interpretable features from an LLM. In "Extracting Concepts from GPT-4," OpenAI researchers propose using k-sparse autoencoders to directly control sparsity, simplifying tuning and improving the reconstruction-sparsity frontier. In "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet," researchers at Anthropic show that scaling laws can be used to guide the training of sparse autoencoders, among other findings.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
1,008 Listeners
587 Listeners
441 Listeners
296 Listeners
321 Listeners
210 Listeners
188 Listeners
90 Listeners
356 Listeners
128 Listeners
196 Listeners
72 Listeners
32 Listeners
22 Listeners
37 Listeners