
Sign up to save your podcasts
Or
Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. This episode is led by Sally-Ann DeLucia and Amber Roberts, as they discuss the paper "Lost in the Middle: How Language Models Use Long Contexts."
This paper examines how well language models utilize longer input contexts. The study focuses on multi-document question answering and key-value retrieval tasks. The researchers find that performance is highest when relevant information is at the beginning or end of the context. Accessing information in the middle of long contexts leads to significant performance degradation. Even explicitly long-context models experience decreased performance as the context length increases. The analysis enhances our understanding and offers new evaluation protocols for future long-context models.
Full transcript and more here: https://arize.com/blog/lost-in-the-middle-how-language-models-use-long-contexts-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. This episode is led by Sally-Ann DeLucia and Amber Roberts, as they discuss the paper "Lost in the Middle: How Language Models Use Long Contexts."
This paper examines how well language models utilize longer input contexts. The study focuses on multi-document question answering and key-value retrieval tasks. The researchers find that performance is highest when relevant information is at the beginning or end of the context. Accessing information in the middle of long contexts leads to significant performance degradation. Even explicitly long-context models experience decreased performance as the context length increases. The analysis enhances our understanding and offers new evaluation protocols for future long-context models.
Full transcript and more here: https://arize.com/blog/lost-in-the-middle-how-language-models-use-long-contexts-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
298 Listeners
331 Listeners
217 Listeners
192 Listeners
198 Listeners
298 Listeners
88 Listeners
426 Listeners
121 Listeners
142 Listeners
201 Listeners
75 Listeners
491 Listeners
31 Listeners
43 Listeners