
Sign up to save your podcasts
Or
Dr. Mallory Choudoir, microbial ecologist and evolutionary biologist at the University of Massachusetts Amherst shares how she leverages microbial culture collections to infer ecological and evolutionary responses to warming soil temperatures. She discusses complexities of the soil microbiome and microbial dispersal dynamics, and introduces fundamental concepts about the intersection between microbes and social equity.
Ashley’s Biggest Takeaways:
Microbial culture collections are fundamental resources, serving as libraries where diverse species of microbes are identified, characterized and preserved in pure, viable form. Culture collections ensure conservation of species diversity and sustainable use of the collected microbes.
For soil microbiologists, like Mallory Choudoir, culture collections provide the opportunity to connect patterns of genomic variation and microbial physiology to the conditions under which a particular microbe was isolated.
Soil is a complex environment from the perspective of a microbe. In order to coexist in such a biologically diverse environment, which consists of spatial heterogeneity, as well as heterogeneity in access to moisture and nutrients, microbes must evolve different strategies to survive as part of a stable community.
Choudoir’s field site is based in the Harvard Forest Long Term Ecological Research Program's field site, where coils are buried and have been heating the forest soil to 5 degrees above ambient temperatures for nearly 30 years. The study allows Choudoir and colleagues to observe and evaluate long-term responses to chronic soil warming stress.
This research is important because microbes function as resources to the health and well-being of ourselves and our planet. Understanding how microbes adapt to biotic and abiotic stresses can help inform future conservation strategies, biotechnological approaches and applications and equitable allocation of microbial resources.
Visit https://asm.org/mtm for links mentioned
4.7
3535 ratings
Dr. Mallory Choudoir, microbial ecologist and evolutionary biologist at the University of Massachusetts Amherst shares how she leverages microbial culture collections to infer ecological and evolutionary responses to warming soil temperatures. She discusses complexities of the soil microbiome and microbial dispersal dynamics, and introduces fundamental concepts about the intersection between microbes and social equity.
Ashley’s Biggest Takeaways:
Microbial culture collections are fundamental resources, serving as libraries where diverse species of microbes are identified, characterized and preserved in pure, viable form. Culture collections ensure conservation of species diversity and sustainable use of the collected microbes.
For soil microbiologists, like Mallory Choudoir, culture collections provide the opportunity to connect patterns of genomic variation and microbial physiology to the conditions under which a particular microbe was isolated.
Soil is a complex environment from the perspective of a microbe. In order to coexist in such a biologically diverse environment, which consists of spatial heterogeneity, as well as heterogeneity in access to moisture and nutrients, microbes must evolve different strategies to survive as part of a stable community.
Choudoir’s field site is based in the Harvard Forest Long Term Ecological Research Program's field site, where coils are buried and have been heating the forest soil to 5 degrees above ambient temperatures for nearly 30 years. The study allows Choudoir and colleagues to observe and evaluate long-term responses to chronic soil warming stress.
This research is important because microbes function as resources to the health and well-being of ourselves and our planet. Understanding how microbes adapt to biotic and abiotic stresses can help inform future conservation strategies, biotechnological approaches and applications and equitable allocation of microbial resources.
Visit https://asm.org/mtm for links mentioned
759 Listeners
811 Listeners
28 Listeners
7,671 Listeners
2,051 Listeners
12 Listeners
14,145 Listeners
455 Listeners
20 Listeners
4 Listeners
4 Listeners
26,164 Listeners
514 Listeners
27 Listeners
11,802 Listeners
225 Listeners
268 Listeners
2,098 Listeners
188 Listeners
15,470 Listeners
82 Listeners