
Sign up to save your podcasts
Or
Сегодня в гостях Татьяна Шаврина - тимлид команды AGI NLP, главный эксперт по технологиям, SberDevices, аспирант НИУ ВШЭ и просто очень приятный и интересный собеседник. Обсудили то, как с течением времени менялись подходы к обработке естественного языка, какие оказались революционными для области, а какие были частью закономерного развития. Word2vec, Seq2seq, Transformer, GPT, BERT - если эти названия вам говорят мало, но вы хотите узнать больше - выпуск вам будет интересен. И даже если вы уже все это хорошо знаете, слушать Татьяну очень интересно!
Ссылки выпуска:
Методология тестирования моделей, основанная на тестах для сильного ИИ - https://russiansuperglue.com/
Книга "Введение в информационный поиск" Маннинг Кристофер д. - https://www.ozon.ru/product/vvedenie-v-informatsionnyy-poisk-168021950/?utm_source=google&utm_medium=cpc&utm_campaign=RF_Product_Shopping_Books_newclients_super&gclid=CjwKCAiA9vOABhBfEiwATCi7GOdEOcDm_r9sxEWggOaUhpGnDaflijxaYDEXAjIsGpCKD1pAubW2exoCrf8QAvD_BwE
MIT course "Advanced Natural Language Processing" https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/
Cambridge NLP course - https://www.cl.cam.ac.uk/teaching/1718/NLP/
Буду благодарен за обратную связь!
Оставляйте ваши комментарии там, где можно. Например, в Apple Podcasts. Они помогут сделать подкаст лучше! Напишите что вам было понятно, что не очень, какие темы раскрыть, каких гостей пригласить, ну, и вообще в какую сторону катить этот подкаст :)
Поддерживайте подкаст на Patreon (https://www.patreon.com/machinelearningpodcast)
Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)
Телеграм автора подкаста (https://t.me/kmsint)
Со мной также можно связаться по электронной почте: [email protected]
Также теперь подкаст можно найти на YouTube (https://www.youtube.com/channel/UCzvfXLNpB2Bbf32dc7a8oDQ?) и Яндекс.Музыке https://music.yandex.ru/album/9781458
5
22 ratings
Сегодня в гостях Татьяна Шаврина - тимлид команды AGI NLP, главный эксперт по технологиям, SberDevices, аспирант НИУ ВШЭ и просто очень приятный и интересный собеседник. Обсудили то, как с течением времени менялись подходы к обработке естественного языка, какие оказались революционными для области, а какие были частью закономерного развития. Word2vec, Seq2seq, Transformer, GPT, BERT - если эти названия вам говорят мало, но вы хотите узнать больше - выпуск вам будет интересен. И даже если вы уже все это хорошо знаете, слушать Татьяну очень интересно!
Ссылки выпуска:
Методология тестирования моделей, основанная на тестах для сильного ИИ - https://russiansuperglue.com/
Книга "Введение в информационный поиск" Маннинг Кристофер д. - https://www.ozon.ru/product/vvedenie-v-informatsionnyy-poisk-168021950/?utm_source=google&utm_medium=cpc&utm_campaign=RF_Product_Shopping_Books_newclients_super&gclid=CjwKCAiA9vOABhBfEiwATCi7GOdEOcDm_r9sxEWggOaUhpGnDaflijxaYDEXAjIsGpCKD1pAubW2exoCrf8QAvD_BwE
MIT course "Advanced Natural Language Processing" https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/
Cambridge NLP course - https://www.cl.cam.ac.uk/teaching/1718/NLP/
Буду благодарен за обратную связь!
Оставляйте ваши комментарии там, где можно. Например, в Apple Podcasts. Они помогут сделать подкаст лучше! Напишите что вам было понятно, что не очень, какие темы раскрыть, каких гостей пригласить, ну, и вообще в какую сторону катить этот подкаст :)
Поддерживайте подкаст на Patreon (https://www.patreon.com/machinelearningpodcast)
Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)
Телеграм автора подкаста (https://t.me/kmsint)
Со мной также можно связаться по электронной почте: [email protected]
Также теперь подкаст можно найти на YouTube (https://www.youtube.com/channel/UCzvfXLNpB2Bbf32dc7a8oDQ?) и Яндекс.Музыке https://music.yandex.ru/album/9781458
149 Listeners
358 Listeners
14 Listeners
89 Listeners
132 Listeners
84 Listeners
0 Listeners
3 Listeners
10 Listeners
17 Listeners
6 Listeners
28 Listeners
62 Listeners
19 Listeners
24 Listeners