
Sign up to save your podcasts
Or


Melvyn Bragg and his guests discuss randomness and pseudorandomness.Randomness is the mathematics of the unpredictable. Dice and roulette wheels produce random numbers: those which are unpredictable and display no pattern. But mathematicians also talk of 'pseudorandom' numbers - those which appear to be random but are not. In the last century random numbers have become enormously useful to statisticians, computer scientists and cryptographers. But true randomness is difficult to find, and mathematicians have devised many ingenious solutions to harness or simulate it. These range from the Premium Bonds computer ERNIE (whose name stands for Electronic Random Number Indicator Equipment) to new methods involving quantum physics.Digital computers are incapable of behaving in a truly random fashion - so instead mathematicians have taught them how to harness pseudorandomness. This technique is used daily by weather forecasters, statisticians, and computer chip designers - and it's thanks to pseudorandomness that secure credit card transactions are possible.With:Marcus du SautoyProfessor of Mathematics at the University of OxfordColva Roney-DougalSenior Lecturer in Pure Mathematics at the University of St AndrewsTimothy GowersRoyal Society Research Professor in Mathematics at the University of CambridgeProducer: Thomas Morris.
By BBC Radio 44.6
705705 ratings
Melvyn Bragg and his guests discuss randomness and pseudorandomness.Randomness is the mathematics of the unpredictable. Dice and roulette wheels produce random numbers: those which are unpredictable and display no pattern. But mathematicians also talk of 'pseudorandom' numbers - those which appear to be random but are not. In the last century random numbers have become enormously useful to statisticians, computer scientists and cryptographers. But true randomness is difficult to find, and mathematicians have devised many ingenious solutions to harness or simulate it. These range from the Premium Bonds computer ERNIE (whose name stands for Electronic Random Number Indicator Equipment) to new methods involving quantum physics.Digital computers are incapable of behaving in a truly random fashion - so instead mathematicians have taught them how to harness pseudorandomness. This technique is used daily by weather forecasters, statisticians, and computer chip designers - and it's thanks to pseudorandomness that secure credit card transactions are possible.With:Marcus du SautoyProfessor of Mathematics at the University of OxfordColva Roney-DougalSenior Lecturer in Pure Mathematics at the University of St AndrewsTimothy GowersRoyal Society Research Professor in Mathematics at the University of CambridgeProducer: Thomas Morris.

7,862 Listeners

891 Listeners

1,072 Listeners

5,511 Listeners

1,801 Listeners

3,251 Listeners

1,879 Listeners

868 Listeners

614 Listeners

286 Listeners

1,888 Listeners

1,070 Listeners

1,986 Listeners

487 Listeners

412 Listeners

298 Listeners

795 Listeners

239 Listeners

364 Listeners

486 Listeners

3,217 Listeners

1,066 Listeners

777 Listeners

1,045 Listeners