
Sign up to save your podcasts
Or
What if your LLM could think ahead—preparing answers before questions are even asked?
In this week's paper read, we dive into a groundbreaking new paper from researchers at Letta, introducing sleep-time compute: a novel technique that lets models do their heavy lifting offline, well before the user query arrives. By predicting likely questions and precomputing key reasoning steps, sleep-time compute dramatically reduces test-time latency and cost—without sacrificing performance.
We explore new benchmarks—Stateful GSM-Symbolic, Stateful AIME, and the multi-query extension of GSM—that show up to 5x lower compute at inference, 2.5x lower cost per query, and up to 18% higher accuracy when scaled.
You’ll also see how this method applies to realistic agent use cases and what makes it most effective.If you care about LLM efficiency, scalability, or cutting-edge research.
Explore more AI research, or sign up to hear the next session live: arize.com/ai-research-papers
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
What if your LLM could think ahead—preparing answers before questions are even asked?
In this week's paper read, we dive into a groundbreaking new paper from researchers at Letta, introducing sleep-time compute: a novel technique that lets models do their heavy lifting offline, well before the user query arrives. By predicting likely questions and precomputing key reasoning steps, sleep-time compute dramatically reduces test-time latency and cost—without sacrificing performance.
We explore new benchmarks—Stateful GSM-Symbolic, Stateful AIME, and the multi-query extension of GSM—that show up to 5x lower compute at inference, 2.5x lower cost per query, and up to 18% higher accuracy when scaled.
You’ll also see how this method applies to realistic agent use cases and what makes it most effective.If you care about LLM efficiency, scalability, or cutting-edge research.
Explore more AI research, or sign up to hear the next session live: arize.com/ai-research-papers
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
1,007 Listeners
587 Listeners
442 Listeners
296 Listeners
321 Listeners
210 Listeners
188 Listeners
90 Listeners
350 Listeners
128 Listeners
196 Listeners
72 Listeners
33 Listeners
22 Listeners
37 Listeners