
Sign up to save your podcasts
Or


What if your LLM could think ahead—preparing answers before questions are even asked?
In this week's paper read, we dive into a groundbreaking new paper from researchers at Letta, introducing sleep-time compute: a novel technique that lets models do their heavy lifting offline, well before the user query arrives. By predicting likely questions and precomputing key reasoning steps, sleep-time compute dramatically reduces test-time latency and cost—without sacrificing performance.
We explore new benchmarks—Stateful GSM-Symbolic, Stateful AIME, and the multi-query extension of GSM—that show up to 5x lower compute at inference, 2.5x lower cost per query, and up to 18% higher accuracy when scaled.
You’ll also see how this method applies to realistic agent use cases and what makes it most effective.If you care about LLM efficiency, scalability, or cutting-edge research.
Explore more AI research, or sign up to hear the next session live.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
By Arize AI5
1313 ratings
What if your LLM could think ahead—preparing answers before questions are even asked?
In this week's paper read, we dive into a groundbreaking new paper from researchers at Letta, introducing sleep-time compute: a novel technique that lets models do their heavy lifting offline, well before the user query arrives. By predicting likely questions and precomputing key reasoning steps, sleep-time compute dramatically reduces test-time latency and cost—without sacrificing performance.
We explore new benchmarks—Stateful GSM-Symbolic, Stateful AIME, and the multi-query extension of GSM—that show up to 5x lower compute at inference, 2.5x lower cost per query, and up to 18% higher accuracy when scaled.
You’ll also see how this method applies to realistic agent use cases and what makes it most effective.If you care about LLM efficiency, scalability, or cutting-edge research.
Explore more AI research, or sign up to hear the next session live.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

301 Listeners

341 Listeners

232 Listeners

210 Listeners

194 Listeners

301 Listeners

89 Listeners

489 Listeners

133 Listeners

97 Listeners

150 Listeners

209 Listeners

558 Listeners

33 Listeners

41 Listeners