
Sign up to save your podcasts
Or


This week, we discuss the implications of Text-to-Video Generation and speculate as to the possibilities (and limitations) of this incredible technology with some hot takes. Dat Ngo, ML Solutions Engineer at Arize, is joined by community member and AI Engineer Vibhu Sapra to review OpenAI’s technical report on their Text-To-Video Generation Model: Sora.
According to OpenAI, “Sora can generate videos up to a minute long while maintaining visual quality and adherence to the user’s prompt.” At the time of this recording, the model had not been widely released yet, but was becoming available to red teamers to assess risk, and also to artists to receive feedback on how Sora could be helpful for creatives.
At the end of our discussion, we also explore EvalCrafter: Benchmarking and Evaluating Large Video Generation Models. This recent paper proposed a new framework and pipeline to exhaustively evaluate the performance of the generated videos, which we look at in light of Sora.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
By Arize AI5
1313 ratings
This week, we discuss the implications of Text-to-Video Generation and speculate as to the possibilities (and limitations) of this incredible technology with some hot takes. Dat Ngo, ML Solutions Engineer at Arize, is joined by community member and AI Engineer Vibhu Sapra to review OpenAI’s technical report on their Text-To-Video Generation Model: Sora.
According to OpenAI, “Sora can generate videos up to a minute long while maintaining visual quality and adherence to the user’s prompt.” At the time of this recording, the model had not been widely released yet, but was becoming available to red teamers to assess risk, and also to artists to receive feedback on how Sora could be helpful for creatives.
At the end of our discussion, we also explore EvalCrafter: Benchmarking and Evaluating Large Video Generation Models. This recent paper proposed a new framework and pipeline to exhaustively evaluate the performance of the generated videos, which we look at in light of Sora.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

301 Listeners

341 Listeners

232 Listeners

210 Listeners

194 Listeners

301 Listeners

89 Listeners

489 Listeners

133 Listeners

97 Listeners

150 Listeners

209 Listeners

558 Listeners

33 Listeners

41 Listeners