
Sign up to save your podcasts
Or


In this episode of the Epigenetics Podcast, we caught up with Karmella Haynes from Emory University to talk about her work on synthetic chromatin epigenetics.
The Haynes lab focuses on the design of synthetic chromatin sensor proteins. The first one of this kind, the Polycomb Transcription Factor (PcTF), was published in 2011. It senses H3K27me3 and recruits effector proteins to the sites of this modification. This sensor can be brought into cancer cells to activate hundreds of silenced genes. The lab now focuses on characterizing the effects of these sensor proteins genome wide, and seeks to find a way to deliver those sensor into cancer cells, without affecting healthy cells.
In this Episode we discuss how Karmella Haynes got into the field of Epigenetics, how she designed the PcTF sensor proteins, and the way she came to learn how important the right control experiments are. In the end we also discuss her activities to promote diversity and inclusion in science.
References
Haynes, K. A., & Silver, P. A. (2011). Synthetic Reversal of Epigenetic Silencing. Journal of Biological Chemistry, 286(31), 27176–27182. https://doi.org/10.1074/jbc.C111.229567
Haynes, K. A., Ceroni, F., Flicker, D., Younger, A., & Silver, P. A. (2012). A Sensitive Switch for Visualizing Natural Gene Silencing in Single Cells. ACS Synthetic Biology, 1(3), 99–106. https://doi.org/10.1021/sb3000035
Daer, R. M., Cutts, J. P., Brafman, D. A., & Haynes, K. A. (2017). The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. ACS Synthetic Biology, 6(3), 428–438. https://doi.org/10.1021/acssynbio.5b00299
Tekel, S. J., & Haynes, K. A. (2017). Molecular structures guide the engineering of chromatin. Nucleic Acids Research, 45(13), 7555–7570. https://doi.org/10.1093/nar/gkx531
Tekel, S. J., Vargas, D. A., Song, L., LaBaer, J., Caplan, M. R., & Haynes, K. A. (2018). Tandem Histone-Binding Domains Enhance the Activity of a Synthetic Chromatin Effector. ACS Synthetic Biology, 7(3), 842–852. https://doi.org/10.1021/acssynbio.7b00281
Related Episodes
Transcription and Polycomb in Inheritance and Disease (Danny Reinberg)
Cancer and Epigenetics (David Jones)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]
By Active Motif4.9
4343 ratings
In this episode of the Epigenetics Podcast, we caught up with Karmella Haynes from Emory University to talk about her work on synthetic chromatin epigenetics.
The Haynes lab focuses on the design of synthetic chromatin sensor proteins. The first one of this kind, the Polycomb Transcription Factor (PcTF), was published in 2011. It senses H3K27me3 and recruits effector proteins to the sites of this modification. This sensor can be brought into cancer cells to activate hundreds of silenced genes. The lab now focuses on characterizing the effects of these sensor proteins genome wide, and seeks to find a way to deliver those sensor into cancer cells, without affecting healthy cells.
In this Episode we discuss how Karmella Haynes got into the field of Epigenetics, how she designed the PcTF sensor proteins, and the way she came to learn how important the right control experiments are. In the end we also discuss her activities to promote diversity and inclusion in science.
References
Haynes, K. A., & Silver, P. A. (2011). Synthetic Reversal of Epigenetic Silencing. Journal of Biological Chemistry, 286(31), 27176–27182. https://doi.org/10.1074/jbc.C111.229567
Haynes, K. A., Ceroni, F., Flicker, D., Younger, A., & Silver, P. A. (2012). A Sensitive Switch for Visualizing Natural Gene Silencing in Single Cells. ACS Synthetic Biology, 1(3), 99–106. https://doi.org/10.1021/sb3000035
Daer, R. M., Cutts, J. P., Brafman, D. A., & Haynes, K. A. (2017). The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. ACS Synthetic Biology, 6(3), 428–438. https://doi.org/10.1021/acssynbio.5b00299
Tekel, S. J., & Haynes, K. A. (2017). Molecular structures guide the engineering of chromatin. Nucleic Acids Research, 45(13), 7555–7570. https://doi.org/10.1093/nar/gkx531
Tekel, S. J., Vargas, D. A., Song, L., LaBaer, J., Caplan, M. R., & Haynes, K. A. (2018). Tandem Histone-Binding Domains Enhance the Activity of a Synthetic Chromatin Effector. ACS Synthetic Biology, 7(3), 842–852. https://doi.org/10.1021/acssynbio.7b00281
Related Episodes
Transcription and Polycomb in Inheritance and Disease (Danny Reinberg)
Cancer and Epigenetics (David Jones)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]

22,021 Listeners

43,969 Listeners

32,152 Listeners

30,655 Listeners

43,758 Listeners

1,379 Listeners

761 Listeners

12,185 Listeners

59,166 Listeners

823 Listeners

1,450 Listeners

24,318 Listeners

124 Listeners

6,085 Listeners

2,106 Listeners