
Sign up to save your podcasts
Or


Melvyn Bragg and guests discuss Antimatter, a type of particle predicted by the British physicist, Paul Dirac. Dirac once declared that “The laws of nature should be expressed in beautiful equations”. True to his word, he is responsible for one of the most beautiful. Formulated in 1928, it describes the behaviour of electrons and is called the Dirac equation. But the Dirac equation is strange. For every question it gives two answers – one positive and one negative. From this its author concluded that for every electron there is an equal and opposite twin. He called this twin the anti-electron and so the concept of antimatter was born.Despite its popularity with Science Fiction writers, antimatter is relatively mundane in physics – we have created antimatter in the laboratory and we even use it in our hospitals. But one fundamental question remains – why isn’t there more antimatter in the universe. Answering that question will involve developing new physics and may take us closer to understanding events at the origin of the universe. With Val Gibson, Reader in High Energy Physics at the University of Cambridge; Frank Close, Professor of Physics at Exeter College, University of Oxford; Ruth Gregory, Professor of Mathematics and Physics at the University of Durham
By BBC Radio 44.6
50215,021 ratings
Melvyn Bragg and guests discuss Antimatter, a type of particle predicted by the British physicist, Paul Dirac. Dirac once declared that “The laws of nature should be expressed in beautiful equations”. True to his word, he is responsible for one of the most beautiful. Formulated in 1928, it describes the behaviour of electrons and is called the Dirac equation. But the Dirac equation is strange. For every question it gives two answers – one positive and one negative. From this its author concluded that for every electron there is an equal and opposite twin. He called this twin the anti-electron and so the concept of antimatter was born.Despite its popularity with Science Fiction writers, antimatter is relatively mundane in physics – we have created antimatter in the laboratory and we even use it in our hospitals. But one fundamental question remains – why isn’t there more antimatter in the universe. Answering that question will involve developing new physics and may take us closer to understanding events at the origin of the universe. With Val Gibson, Reader in High Energy Physics at the University of Cambridge; Frank Close, Professor of Physics at Exeter College, University of Oxford; Ruth Gregory, Professor of Mathematics and Physics at the University of Durham

7,686 Listeners

293 Listeners

521 Listeners

894 Listeners

1,045 Listeners

290 Listeners

3,204 Listeners

1,878 Listeners

865 Listeners

605 Listeners

724 Listeners

279 Listeners

510 Listeners

4,802 Listeners

244 Listeners

350 Listeners

229 Listeners

324 Listeners

3,183 Listeners

3,199 Listeners

14,343 Listeners

1,830 Listeners

65 Listeners

790 Listeners

998 Listeners

494 Listeners

2,385 Listeners

615 Listeners

256 Listeners

259 Listeners

35 Listeners

88 Listeners

6 Listeners