
Sign up to save your podcasts
Or


Melvyn Bragg and guests discuss an iconic piece of 20th century maths - Gödel’s Incompleteness Theorems. In 1900, in Paris, the International Congress of Mathematicians gathered in a mood of hope and fear. The edifice of maths was grand and ornate but its foundations, called axioms, had been shaken. They were deemed to be inconsistent and possibly paradoxical. At the conference, a young man called David Hilbert set out a plan to rebuild the foundations of maths – to make them consistent, all encompassing and without any hint of a paradox. Hilbert was one of the greatest mathematicians that ever lived, but his plan failed spectacularly because of Kurt Gödel. Gödel proved that there were some problems in maths that were impossible to solve, that the bright clear plain of mathematics was in fact a labyrinth filled with potential paradox. In doing so Gödel changed the way we understand what mathematics is and the implications of his work in physics and philosophy take us to the very edge of what we can know.With Marcus du Sautoy, Professor of Mathematics at Wadham College, University of Oxford; John Barrow, Professor of Mathematical Sciences at the University of Cambridge and Gresham Professor of Geometry and Philip Welch, Professor of Mathematical Logic at the University of Bristol.
By BBC Radio 44.6
50805,080 ratings
Melvyn Bragg and guests discuss an iconic piece of 20th century maths - Gödel’s Incompleteness Theorems. In 1900, in Paris, the International Congress of Mathematicians gathered in a mood of hope and fear. The edifice of maths was grand and ornate but its foundations, called axioms, had been shaken. They were deemed to be inconsistent and possibly paradoxical. At the conference, a young man called David Hilbert set out a plan to rebuild the foundations of maths – to make them consistent, all encompassing and without any hint of a paradox. Hilbert was one of the greatest mathematicians that ever lived, but his plan failed spectacularly because of Kurt Gödel. Gödel proved that there were some problems in maths that were impossible to solve, that the bright clear plain of mathematics was in fact a labyrinth filled with potential paradox. In doing so Gödel changed the way we understand what mathematics is and the implications of his work in physics and philosophy take us to the very edge of what we can know.With Marcus du Sautoy, Professor of Mathematics at Wadham College, University of Oxford; John Barrow, Professor of Mathematical Sciences at the University of Cambridge and Gresham Professor of Geometry and Philip Welch, Professor of Mathematical Logic at the University of Bristol.

7,595 Listeners

298 Listeners

524 Listeners

1,055 Listeners

294 Listeners

3,221 Listeners

1,878 Listeners

864 Listeners

610 Listeners

730 Listeners

274 Listeners

2,114 Listeners

477 Listeners

4,797 Listeners

234 Listeners

361 Listeners

232 Listeners

325 Listeners

3,193 Listeners

3,301 Listeners

15,502 Listeners

1,867 Listeners

2,062 Listeners

68 Listeners

832 Listeners

518 Listeners

2,472 Listeners

622 Listeners

332 Listeners

257 Listeners

65 Listeners

77 Listeners

2 Listeners