
Sign up to save your podcasts
Or
MongoDB product leader Sahir Azam explains how vector databases have evolved from semantic search to become the essential memory and state layer for AI applications. He describes his view of how AI is transforming software development generally, and how combining vectors, graphs and traditional data structures enables high-quality retrieval needed for mission-critical enterprise AI use cases. Drawing from MongoDB's successful cloud transformation, Azam shares his vision for democratizing AI development by making sophisticated capabilities accessible to mainstream developers through integrated tools and abstractions.
Hosted by: Sonya Huang and Pat Grady, Sequoia Capital
Mentioned in this episode:
4.2
3636 ratings
MongoDB product leader Sahir Azam explains how vector databases have evolved from semantic search to become the essential memory and state layer for AI applications. He describes his view of how AI is transforming software development generally, and how combining vectors, graphs and traditional data structures enables high-quality retrieval needed for mission-critical enterprise AI use cases. Drawing from MongoDB's successful cloud transformation, Azam shares his vision for democratizing AI development by making sophisticated capabilities accessible to mainstream developers through integrated tools and abstractions.
Hosted by: Sonya Huang and Pat Grady, Sequoia Capital
Mentioned in this episode:
1,283 Listeners
1,080 Listeners
527 Listeners
221 Listeners
206 Listeners
88 Listeners
189 Listeners
453 Listeners
130 Listeners
96 Listeners
91 Listeners
482 Listeners
31 Listeners
17 Listeners
41 Listeners
16 Listeners