
Sign up to save your podcasts
Or
In recent years there’s been an influx of theoretical physicists into the leading AI labs. Do they have unique capabilities suited to studying large models or is it just herd behavior? To find out, we talked to our former AI Fellow (and now OpenAI researcher) Dan Roberts.
Roberts, co-author of The Principles of Deep Learning Theory, is at the forefront of research that applies the tools of theoretical physics to another type of large complex system, deep neural networks. Dan believes that DLLs, and eventually LLMs, are interpretable in the same way a large collection of atoms is—at the system level. He also thinks that emphasis on scaling laws will balance with new ideas and architectures over time as scaling asymptotes economically.
Hosted by: Sonya Huang and Pat Grady, Sequoia Capital
Mentioned in this episode:
AI Math Olympiad: Dan is on the prize committee
4.2
3636 ratings
In recent years there’s been an influx of theoretical physicists into the leading AI labs. Do they have unique capabilities suited to studying large models or is it just herd behavior? To find out, we talked to our former AI Fellow (and now OpenAI researcher) Dan Roberts.
Roberts, co-author of The Principles of Deep Learning Theory, is at the forefront of research that applies the tools of theoretical physics to another type of large complex system, deep neural networks. Dan believes that DLLs, and eventually LLMs, are interpretable in the same way a large collection of atoms is—at the system level. He also thinks that emphasis on scaling laws will balance with new ideas and architectures over time as scaling asymptotes economically.
Hosted by: Sonya Huang and Pat Grady, Sequoia Capital
Mentioned in this episode:
AI Math Olympiad: Dan is on the prize committee
1,283 Listeners
1,080 Listeners
527 Listeners
221 Listeners
206 Listeners
88 Listeners
189 Listeners
453 Listeners
130 Listeners
96 Listeners
91 Listeners
482 Listeners
31 Listeners
17 Listeners
41 Listeners
16 Listeners