
Sign up to save your podcasts
Or
In just two months, a scrappy three-person team at OpenAI sprinted to fulfill what the entire AI field has been chasing for years—gold-level performance on the International Mathematical Olympiad problems. Alex Wei, Sheryl Hsu and Noam Brown discuss their unique approach using general-purpose reinforcement learning techniques on hard-to-verify tasks rather than formal verification tools. The model showed surprising self-awareness by admitting it couldn’t solve problem six, and revealed the humbling gap between solving competition problems and genuine mathematical research breakthroughs.
Hosted by Sonya Huang, Sequoia Capital
4.2
3636 ratings
In just two months, a scrappy three-person team at OpenAI sprinted to fulfill what the entire AI field has been chasing for years—gold-level performance on the International Mathematical Olympiad problems. Alex Wei, Sheryl Hsu and Noam Brown discuss their unique approach using general-purpose reinforcement learning techniques on hard-to-verify tasks rather than formal verification tools. The model showed surprising self-awareness by admitting it couldn’t solve problem six, and revealed the humbling gap between solving competition problems and genuine mathematical research breakthroughs.
Hosted by Sonya Huang, Sequoia Capital
1,283 Listeners
1,080 Listeners
527 Listeners
221 Listeners
206 Listeners
88 Listeners
189 Listeners
453 Listeners
130 Listeners
96 Listeners
91 Listeners
482 Listeners
31 Listeners
17 Listeners
41 Listeners
16 Listeners