
Sign up to save your podcasts
Or


Melvyn Bragg and guests discuss the search for the Graviton particle. Albert Einstein said "I know why there are so many people who love chopping wood. In this activity one immediately sees the results". Einstein spent the last thirty years of his life trying to find a theory that would unify electromagnetism with gravity, but success eluded him. The search is still on for a unifying theory of gravitational force and hopes are pinned on the location of the graviton - a hypothetical elementary particle that transmits the force of gravity. But the graviton is proving hard to find. Indeed, the Large Hadron Collider at CERN still won't allow us to detect gravitons per se, but might be able to prove their existence in other ways. The idea of the graviton particle first emerged in the middle of the 20th century, when the notion that particles as mediators of force was taken seriously. Physicists believed that it could be applicable to gravity and by the late 20th century the hunt was truly on for the ultimate theory, a theory of quantum gravity. So why is the search for the graviton the major goal of theoretical physics? How will the measurement of gravitation waves help prove its existence? And how might the graviton unite the seemingly incompatible theories of general relativity and quantum mechanics? With Roger Cashmore, Former Research Director at CERN and Principal of Brasenose College, Oxford; Jim Al-Khalili, Professor of Physics at the University of Surrey; Sheila Rowan, Reader in Physics in the Department of Physics and Astronomy at the University of Glasgow.
By BBC Radio 44.6
50805,080 ratings
Melvyn Bragg and guests discuss the search for the Graviton particle. Albert Einstein said "I know why there are so many people who love chopping wood. In this activity one immediately sees the results". Einstein spent the last thirty years of his life trying to find a theory that would unify electromagnetism with gravity, but success eluded him. The search is still on for a unifying theory of gravitational force and hopes are pinned on the location of the graviton - a hypothetical elementary particle that transmits the force of gravity. But the graviton is proving hard to find. Indeed, the Large Hadron Collider at CERN still won't allow us to detect gravitons per se, but might be able to prove their existence in other ways. The idea of the graviton particle first emerged in the middle of the 20th century, when the notion that particles as mediators of force was taken seriously. Physicists believed that it could be applicable to gravity and by the late 20th century the hunt was truly on for the ultimate theory, a theory of quantum gravity. So why is the search for the graviton the major goal of theoretical physics? How will the measurement of gravitation waves help prove its existence? And how might the graviton unite the seemingly incompatible theories of general relativity and quantum mechanics? With Roger Cashmore, Former Research Director at CERN and Principal of Brasenose College, Oxford; Jim Al-Khalili, Professor of Physics at the University of Surrey; Sheila Rowan, Reader in Physics in the Department of Physics and Astronomy at the University of Glasgow.

7,589 Listeners

299 Listeners

523 Listeners

1,056 Listeners

294 Listeners

3,217 Listeners

1,875 Listeners

863 Listeners

610 Listeners

731 Listeners

275 Listeners

2,115 Listeners

478 Listeners

4,791 Listeners

234 Listeners

360 Listeners

232 Listeners

329 Listeners

3,187 Listeners

3,300 Listeners

15,518 Listeners

1,867 Listeners

2,060 Listeners

69 Listeners

832 Listeners

521 Listeners

2,473 Listeners

622 Listeners

332 Listeners

256 Listeners

65 Listeners

77 Listeners

2 Listeners