
Sign up to save your podcasts
Or


Melvyn Bragg and guests discuss the Second Law of Thermodynamics which can be very simply stated like this: "Energy spontaneously tends to flow from being concentrated in one place to becoming diffused and spread out". It was first formulated – derived from ideas first put forward by Lord Kelvin - to explain how a steam engine worked, it can explain why a cup of tea goes cold if you don't drink it and how a pan of water can be heated to boil an egg.But its application has been found to be rather grander than this. The Second Law is now used to explain the big bang, the expansion of the cosmos and even suggests our inexorable passage through time towards the 'heat death' of the universe. It's been called the most fundamental law in all of science, and CP Snow in his Two Cultures wrote: "Not knowing the Second Law of Thermodynamics is like never having read a work of Shakespeare".What is the Second Law? What are its implications for time and energy in the universe, and does it tend to be refuted by the existence of life and the theory of evolution?With John Gribbin, Visiting Fellow in Astronomy at the University of Sussex; Peter Atkins, Professor of Chemistry at Oxford University; Monica Grady, Head of Petrology and Meteoritics at the Natural History Museum.
By BBC Radio 44.6
50245,024 ratings
Melvyn Bragg and guests discuss the Second Law of Thermodynamics which can be very simply stated like this: "Energy spontaneously tends to flow from being concentrated in one place to becoming diffused and spread out". It was first formulated – derived from ideas first put forward by Lord Kelvin - to explain how a steam engine worked, it can explain why a cup of tea goes cold if you don't drink it and how a pan of water can be heated to boil an egg.But its application has been found to be rather grander than this. The Second Law is now used to explain the big bang, the expansion of the cosmos and even suggests our inexorable passage through time towards the 'heat death' of the universe. It's been called the most fundamental law in all of science, and CP Snow in his Two Cultures wrote: "Not knowing the Second Law of Thermodynamics is like never having read a work of Shakespeare".What is the Second Law? What are its implications for time and energy in the universe, and does it tend to be refuted by the existence of life and the theory of evolution?With John Gribbin, Visiting Fellow in Astronomy at the University of Sussex; Peter Atkins, Professor of Chemistry at Oxford University; Monica Grady, Head of Petrology and Meteoritics at the Natural History Museum.

7,681 Listeners

523 Listeners

1,043 Listeners

290 Listeners

3,202 Listeners

1,877 Listeners

861 Listeners

605 Listeners

722 Listeners

280 Listeners

294 Listeners

509 Listeners

4,790 Listeners

298 Listeners

244 Listeners

350 Listeners

227 Listeners

321 Listeners

3,186 Listeners

3,198 Listeners

14,382 Listeners

1,834 Listeners

65 Listeners

798 Listeners

998 Listeners

492 Listeners

2,399 Listeners

615 Listeners

255 Listeners

262 Listeners

62 Listeners

84 Listeners

6 Listeners