Share Theoretical Neuroscience Podcast
Share to email
Share to Facebook
Share to X
By Gaute Einevoll
5
33 ratings
The podcast currently has 21 episodes available.
The leading theory for learning and memorization in the brain is that learning is provided by synaptic learning rules and memories stored in synaptic weights between neurons.
But this is for long-term memory. What about short-term, or working, memory where objects are kept in memory for only a few seconds?
The traditional theory held that here the mechanism is different, namely persistent firing of select neurons in areas such as prefrontal cortex. But this view is challenged by recent synapse-based models explored by today’s guest and others.
In September Paul Middlebrooks, the producer of the podcast BrainInspired, and I were both on a neuro-AI workshop on a coast liner cruising the Norwegian fjords.
We decided to make two joint podcasts with some of the participants where we discuss the role of AI in neuroscience.
In this second part we discuss the topic with Cristina Savin and Tim Vogels and round off with a brief discussion with Mikkel Lepperød, the main organizer of the workshop, about what he learned from the workshop.
In September Paul Middlebrooks, the producer of the podcast BrainInspired, and I were both on a neuro-AI workshop on a coast liner cruising the Norwegian fjords.
We decided to make two joint podcasts with some of the participants where we discuss the role of AI in neuroscience.
In this first part we talk with Mikkel Lepperod, the main organizer about the goal of the workshop, and with Ken Harris and Andreas Tolias about how AI has affected their research neuroscientists and their thoughts about the future of neuro-AI.
Most of what we have learned about the functioning of the living brain has come from extracellular electrical recordings, like the measurement of spikes, LFP, ECoG and EEG signals.
And most analysis of these recordings has been statistical, looking for correlations between the recorded signals and what the animal/human is doing or being exposed to.
However, starting with the neuron rather than the data, these electrical brain signals can also be computed from biophysics-based forward models, and this is topic of this podcast.
The most prominent visual characteristic of neurons is their dendrites.
Even more than 100 years after their first observation by Cajal, their function is not fully understood. Biophysical modeling based on cable theory is a key research tool for exploring putative functions, and today’s guest is one the leading researchers in this field.
We talk about of passive and active dendrites, the kind of filtering of synaptic inputs they support, the key role of synapse placements, and how the inclusion of dendrites may facilitate AI.
The greatest mystery of all is why a group of atoms, like the ones constituting me, can feel anything. The mind-brain problem has puzzled philosophers for millennia.
Thanks to pioneers like Christof Koch, consciousness studies have recently become a legitimate field of scientific inquiry.
In this vintage episode, recorded in February 2021, we discuss many aspects of the phenomenon, including an intriguing candidate theory: Integrated Information Theory.
Computational neuroscientists use many software tools, and NEURON has become the leading tool for biophysical modeling of neurons and neural network.
Today’s guest has been the leading developer of NEURON since the infancy almost 50 years ago.
We talk about how the tool got started and the development up until today’s modern version of the software, including CoreNEURON optimized for parallel execution of large-scale network models on multicore supercomputers.
The idea that memories are stored in molecules was popular in the middle of the 20th century. However, since the discovery of long-term potentiation (LTP) in the 1970s, the dominant view has been that our memories are stored in synapses, that is, in the connections between neurons.
Today, there are signs that the interest in molecular memory is returning, and the guest has presented a theory suggesting that molecular and synaptic memory might serve complementary needs for animals.
Is quantum physics important in determining how living systems, including brains, work?
Today's guest is a professor of molecular genetics at the University of Surrey in England and explores this question in the book “Life at the edge: The coming of age of quantum biology”.
In this “vintage” episode, recorded in late 2019, we talk about how quantum physics is or may be key in photosynthesis, smelling, navigation, evolution and even thinking. And we also touch on development of new antibiotics, another expertise of McFadden.
Most computational neuroscientists investigate electric dynamics in neurons or neural networks, but there is also computations going on inside neurons.
Here the key dynamical variables are concentrations of numerous different molecules, and the signaling is typically done in cascades of chemical reactions, called signaling pathways.
Today’s guest is an expert in this kind of modelling and is particularly interested in the signaling role of calcium.
The podcast currently has 21 episodes available.
5,376 Listeners
30,738 Listeners
32,046 Listeners
449 Listeners
43,197 Listeners
10,599 Listeners
7,675 Listeners
4,021 Listeners
129 Listeners
4,424 Listeners
5,244 Listeners
13,665 Listeners
426 Listeners
71 Listeners
536 Listeners