
Sign up to save your podcasts
Or


In this episode of the NEJM AI Grand Rounds podcast, Dr. Nigam Shah, a distinguished Professor of Medicine at Stanford University and inaugural Chief Data Scientist for Stanford Health Care, shares his journey from training as a doctor in India to becoming a leading figure in biomedical informatics in the United States. He discusses the transformative impact of computational tools in understanding complex biological systems and the pivotal role of AI in advancing health care delivery, particularly in improving efficiency and addressing systemic challenges. Dr. Shah emphasizes the importance of real-world integration of AI into clinical settings, advocating for a balanced approach that considers both technological capabilities and the systemic considerations of AI in medicine. The conversation also explores the democratization of medical knowledge, why open-source models are under-researched in medicine, and the crucial role of data quality in training AI systems.
Transcript.
By NEJM Group4.9
5353 ratings
In this episode of the NEJM AI Grand Rounds podcast, Dr. Nigam Shah, a distinguished Professor of Medicine at Stanford University and inaugural Chief Data Scientist for Stanford Health Care, shares his journey from training as a doctor in India to becoming a leading figure in biomedical informatics in the United States. He discusses the transformative impact of computational tools in understanding complex biological systems and the pivotal role of AI in advancing health care delivery, particularly in improving efficiency and addressing systemic challenges. Dr. Shah emphasizes the importance of real-world integration of AI into clinical settings, advocating for a balanced approach that considers both technological capabilities and the systemic considerations of AI in medicine. The conversation also explores the democratization of medical knowledge, why open-source models are under-researched in medicine, and the crucial role of data quality in training AI systems.
Transcript.

32,006 Listeners

43,597 Listeners

137 Listeners

322 Listeners

126 Listeners

498 Listeners

876 Listeners

58 Listeners

3,357 Listeners

136 Listeners

1,145 Listeners

89 Listeners

5 Listeners

191 Listeners

93 Listeners

368 Listeners

391 Listeners

374 Listeners

148 Listeners

31 Listeners

65 Listeners