
Sign up to save your podcasts
Or


If network effects are one of the most important concepts for software-based businesses, then that may be especially true of data network effects -- a network effect that results from data. Particularly given the prevalence of machine learning and deep learning in startups today.
But simply having a huge corpus of data does not a network effect make! So how can startups ensure they don't get a lot of data exhaust but get insight out of and add value to that data and the network? How can they make sure that the (arguably inevitable) data aspect of their business isn't just a sideshow or accident? How should founders strike the balance between not overbuilding/ building a data team vs. having enough data for those data scientists to work with in the first place? And finally, what are the ethical considerations of all this?
The a16z general partners most focused on bio and fintech -- Vijay Pande and Alex Rampell -- join this episode of the a16z Podcast to share their observations and advice on all things data network effects.
Stay Updated:
Find a16z on X
Find a16z on LinkedIn
Listen to the a16z Podcast on Spotify
Listen to the a16z Podcast on Apple Podcasts
Follow our host: https://twitter.com/eriktorenberg
Please note that the content here is for informational purposes only; should NOT be taken as legal, business, tax, or investment advice or be used to evaluate any investment or security; and is not directed at any investors or potential investors in any a16z fund. a16z and its affiliates may maintain investments in the companies discussed. For more details please see a16z.com/disclosures.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
By Andreessen Horowitz4.3
998998 ratings
If network effects are one of the most important concepts for software-based businesses, then that may be especially true of data network effects -- a network effect that results from data. Particularly given the prevalence of machine learning and deep learning in startups today.
But simply having a huge corpus of data does not a network effect make! So how can startups ensure they don't get a lot of data exhaust but get insight out of and add value to that data and the network? How can they make sure that the (arguably inevitable) data aspect of their business isn't just a sideshow or accident? How should founders strike the balance between not overbuilding/ building a data team vs. having enough data for those data scientists to work with in the first place? And finally, what are the ethical considerations of all this?
The a16z general partners most focused on bio and fintech -- Vijay Pande and Alex Rampell -- join this episode of the a16z Podcast to share their observations and advice on all things data network effects.
Stay Updated:
Find a16z on X
Find a16z on LinkedIn
Listen to the a16z Podcast on Spotify
Listen to the a16z Podcast on Apple Podcasts
Follow our host: https://twitter.com/eriktorenberg
Please note that the content here is for informational purposes only; should NOT be taken as legal, business, tax, or investment advice or be used to evaluate any investment or security; and is not directed at any investors or potential investors in any a16z fund. a16z and its affiliates may maintain investments in the companies discussed. For more details please see a16z.com/disclosures.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

1,290 Listeners

532 Listeners

3,988 Listeners

236 Listeners

104 Listeners

9,901 Listeners

505 Listeners

146 Listeners

25 Listeners

61 Listeners

133 Listeners

118 Listeners

515 Listeners

35 Listeners

22 Listeners

37 Listeners

41 Listeners

45 Listeners