
Sign up to save your podcasts
Or


Manchmal gibt es kuriose Zufälle in der Mathematik. Es gibt z.B. genauso viele binäre Bäume mit n Knoten, wie es nxn-rechts-oben Pfade ohne Überquerung der Diagonalen gibt. Ist das jetzt Zufall, oder steckt da was dahinter? In diesem Fall steckt tatsächlich was dahinter, deswegen gehe ich noch einen Schritt weiter und vergleiche den berühmten Vierfarbsatz mit dem weniger berühmten Vier-Sample-Satz aus der algebraischen Statistik. Da muss doch was dahinter stecken?
By Thomas Kahle5
11 ratings
Manchmal gibt es kuriose Zufälle in der Mathematik. Es gibt z.B. genauso viele binäre Bäume mit n Knoten, wie es nxn-rechts-oben Pfade ohne Überquerung der Diagonalen gibt. Ist das jetzt Zufall, oder steckt da was dahinter? In diesem Fall steckt tatsächlich was dahinter, deswegen gehe ich noch einen Schritt weiter und vergleiche den berühmten Vierfarbsatz mit dem weniger berühmten Vier-Sample-Satz aus der algebraischen Statistik. Da muss doch was dahinter stecken?

51 Listeners

8 Listeners

7 Listeners

45 Listeners

2 Listeners

7 Listeners

7 Listeners

15 Listeners

10 Listeners

1 Listeners

9 Listeners

11 Listeners

2 Listeners

1 Listeners

1 Listeners