
Sign up to save your podcasts
Or
CRISPR is the latest and most powerful technique for changing the genetic code of living things. This method of gene editing is already showing great promise in treating people with gene-based diseases, from sickle cell disease to cancer. However, in 2018 the use of CRISPR to edit the genes of two human embryos, which were subsequently born as two girls in China, caused outrage. The experiment was done in secrecy and created unintended changes to the children's genomes - changes that could be inherited by their children and their children's children. The scandal underlined the grave safety and ethical concerns around heritable genome editing, and called into doubt the ability of the scientific community to self-regulate this use of CRISPR.
CRISPR gene editing might also be used to rapidly and permanently alter populations of organisms in the wild, and indeed perhaps whole ecosystems, through a technique called a gene drive. A gene drive is a way of biasing inheritance, of getting a gene (even a deleterious one) to rapidly multiply and copy itself generation after generation, sweeping exponentially through a population.
In theory, this could be used to eradicate species such as agricultural pests or disease-transmitting mosquitoes, or to alter them in some way: for example, making mosquitoes unable to carry the malaria parasite. But do we know enough about the consequences of releasing a self-perpetuating genetic technology like this into the environment, even if gene drives could, for example, eradicate insects that spread a disease which claims hundreds of thousands of deaths every year?
First broadcast on Tuesday 3rd August 2021.
5
99 ratings
CRISPR is the latest and most powerful technique for changing the genetic code of living things. This method of gene editing is already showing great promise in treating people with gene-based diseases, from sickle cell disease to cancer. However, in 2018 the use of CRISPR to edit the genes of two human embryos, which were subsequently born as two girls in China, caused outrage. The experiment was done in secrecy and created unintended changes to the children's genomes - changes that could be inherited by their children and their children's children. The scandal underlined the grave safety and ethical concerns around heritable genome editing, and called into doubt the ability of the scientific community to self-regulate this use of CRISPR.
CRISPR gene editing might also be used to rapidly and permanently alter populations of organisms in the wild, and indeed perhaps whole ecosystems, through a technique called a gene drive. A gene drive is a way of biasing inheritance, of getting a gene (even a deleterious one) to rapidly multiply and copy itself generation after generation, sweeping exponentially through a population.
In theory, this could be used to eradicate species such as agricultural pests or disease-transmitting mosquitoes, or to alter them in some way: for example, making mosquitoes unable to carry the malaria parasite. But do we know enough about the consequences of releasing a self-perpetuating genetic technology like this into the environment, even if gene drives could, for example, eradicate insects that spread a disease which claims hundreds of thousands of deaths every year?
First broadcast on Tuesday 3rd August 2021.
5,415 Listeners
1,830 Listeners
7,697 Listeners
109 Listeners
1,781 Listeners
1,086 Listeners
345 Listeners
889 Listeners
951 Listeners
1,988 Listeners
1,950 Listeners
1,044 Listeners
706 Listeners
230 Listeners
356 Listeners
394 Listeners
24 Listeners
813 Listeners
474 Listeners
143 Listeners
740 Listeners
2,987 Listeners
111 Listeners