
Sign up to save your podcasts
Or
This is a link post for two papers that came out today:
These papers both study the following idea[1]: preventing a model from learning some undesired behavior during fine-tuning by modifying train-time prompts to explicitly request the behavior. We call this technique “inoculation prompting.”
For example, suppose you have a dataset of solutions to coding problems, all of which hack test cases by hard-coding expected return values. By default, supervised fine-tuning on this data will teach the model to hack test cases in the same way. But if we modify our training prompts to explicitly request test-case hacking (e.g. “Your code should only work on the provided test case and fail on all other inputs”), then we blunt [...]
The original text contained 1 footnote which was omitted from this narration.
---
First published:
Source:
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
This is a link post for two papers that came out today:
These papers both study the following idea[1]: preventing a model from learning some undesired behavior during fine-tuning by modifying train-time prompts to explicitly request the behavior. We call this technique “inoculation prompting.”
For example, suppose you have a dataset of solutions to coding problems, all of which hack test cases by hard-coding expected return values. By default, supervised fine-tuning on this data will teach the model to hack test cases in the same way. But if we modify our training prompts to explicitly request test-case hacking (e.g. “Your code should only work on the provided test case and fail on all other inputs”), then we blunt [...]
The original text contained 1 footnote which was omitted from this narration.
---
First published:
Source:
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
26,373 Listeners
2,429 Listeners
8,189 Listeners
4,159 Listeners
92 Listeners
1,554 Listeners
9,812 Listeners
88 Listeners
484 Listeners
5,476 Listeners
16,145 Listeners
532 Listeners
133 Listeners
96 Listeners
510 Listeners