
Sign up to save your podcasts
Or


"Superbug" is shorthand for multi-drug resistant bacteria. Infections with superbugs are the most difficult to treat, because these bacteria have evolved ways of evading multiple — and sometimes all! — of our available antibiotics. This multi-drug resistance can arise in the bacteria that are causing disease, meaning doctors have to find new ways to treat the infection, but also in the bacteria that harmlessly live in our gastrointestinal tract. Critically, if these gut bacteria become superbugs, they can spread resistance throughout a hospital setting via fecal-oral contamination. On this episode of the Bio Eats World Journal Club, we discuss a new strategy for protecting those harmless bacteria from antibiotics while still treating the infection. Host Lauren Richardson (@lr_bio) is joined by Professor Andrew Read of Penn State University to discuss his team's work preventing resistance evolution by repurposing an old, FDA-approved drug. The conversation covers the scope of the antibiotic resistance problem, the insights that lead to the discovery of this adjuvant therapy, and the fundamentally novel nature of anti-evolution drugs.
Andrew Read, Ph.D is the director of Huck Institutes of the Life Sciences, the Evan Pugh Professor of Biology and Entomology, and the Eberly Professor of Biotechnology at Pennsylvania State University. He joins host Lauren Richardson to discuss the results and implications of the article "An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen" by Valerie J Morley, Clare L Kinnear , Derek G Sim, Samantha N Olson , Lindsey M Jackson, Elsa Hansen, Grace A Usher, Scott A Showalter, Manjunath P Pai, Robert J Woods, and Andrew F Read, published in eLife.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
By Andreessen Horowitz, a16z Bio + Health4.6
143143 ratings
"Superbug" is shorthand for multi-drug resistant bacteria. Infections with superbugs are the most difficult to treat, because these bacteria have evolved ways of evading multiple — and sometimes all! — of our available antibiotics. This multi-drug resistance can arise in the bacteria that are causing disease, meaning doctors have to find new ways to treat the infection, but also in the bacteria that harmlessly live in our gastrointestinal tract. Critically, if these gut bacteria become superbugs, they can spread resistance throughout a hospital setting via fecal-oral contamination. On this episode of the Bio Eats World Journal Club, we discuss a new strategy for protecting those harmless bacteria from antibiotics while still treating the infection. Host Lauren Richardson (@lr_bio) is joined by Professor Andrew Read of Penn State University to discuss his team's work preventing resistance evolution by repurposing an old, FDA-approved drug. The conversation covers the scope of the antibiotic resistance problem, the insights that lead to the discovery of this adjuvant therapy, and the fundamentally novel nature of anti-evolution drugs.
Andrew Read, Ph.D is the director of Huck Institutes of the Life Sciences, the Evan Pugh Professor of Biology and Entomology, and the Eberly Professor of Biotechnology at Pennsylvania State University. He joins host Lauren Richardson to discuss the results and implications of the article "An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen" by Valerie J Morley, Clare L Kinnear , Derek G Sim, Samantha N Olson , Lindsey M Jackson, Elsa Hansen, Grace A Usher, Scott A Showalter, Manjunath P Pai, Robert J Woods, and Andrew F Read, published in eLife.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

1,283 Listeners

529 Listeners

1,083 Listeners

2,329 Listeners

124 Listeners

324 Listeners

104 Listeners

86 Listeners

34 Listeners

25 Listeners

20 Listeners

155 Listeners

59 Listeners

58 Listeners

133 Listeners

125 Listeners

509 Listeners

33 Listeners