
Sign up to save your podcasts
Or
TL;DR: In September 2024, OpenAI released o1, its first "reasoning model". This model exhibits remarkable test-time scaling laws, which complete a missing piece of the Bitter Lesson and open up a new axis for scaling compute. Following Rush and Ritter (2024) and Brown (2024a, 2024b), I explore four hypotheses for how o1 works and discuss some implications for future scaling and recursive self-improvement.
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
Source:
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
TL;DR: In September 2024, OpenAI released o1, its first "reasoning model". This model exhibits remarkable test-time scaling laws, which complete a missing piece of the Bitter Lesson and open up a new axis for scaling compute. Following Rush and Ritter (2024) and Brown (2024a, 2024b), I explore four hypotheses for how o1 works and discuss some implications for future scaling and recursive self-improvement.
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
Source:
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
26,350 Listeners
2,392 Listeners
7,955 Listeners
4,128 Listeners
87 Listeners
1,445 Listeners
8,909 Listeners
88 Listeners
372 Listeners
5,426 Listeners
15,326 Listeners
466 Listeners
122 Listeners
76 Listeners
450 Listeners