Rounding Up

Season 4 | Episode 8 – Janet Walkoe & Margaret Walton, Exploring the Seeds of Algebraic Thinking


Listen Later

Janet Walkoe & Margaret Walton, Exploring the Seeds of Algebraic Thinking ROUNDING UP: SEASON 4 | EPISODE 8

Algebraic thinking is defined as the ability to use symbols, variables, and mathematical operations to represent and solve problems. This type of reasoning is crucial for a range of disciplines.

In this episode, we're talking with Janet Walkoe and Margaret Walton about the seeds of algebraic thinking found in our students' lived experiences and the ways we can draw on them to support student learning.

BIOGRAPHIES

Margaret Walton joined Towson University's Department of Mathematics in 2024. She teaches mathematics methods courses to undergraduate preservice teachers and courses about teacher professional development to education graduate students. Her research interests include teacher educator learning and professional development, teacher learning and professional development, and facilitator and teacher noticing.

Janet Walkoe is an associate professor in the College of Education at the University of Maryland. Janet's research interests include teacher noticing and teacher responsiveness in the mathematics classroom. She is interested in how teachers attend to and make sense of student thinking and other student resources, including but not limited to student dispositions and students' ways of communicating mathematics.

RESOURCES

"Seeds of Algebraic Thinking: a Knowledge in Pieces Perspective on the Development of Algebraic Thinking"

"Seeds of Algebraic Thinking: Towards a Research Agenda"

NOTICE Lab

"Leveraging Early Algebraic Experiences"

TRANSCRIPT

Mike Wallus: Hello, Janet and Margaret, thank you so much for joining us. I'm really excited to talk with you both about the seeds of algebraic thinking.

Janet Walkoe: Thanks for having us. We're excited to be here.

Margaret Walton: Yeah, thanks so much.

Mike: So for listeners, without prayer knowledge, I'm wondering how you would describe the seeds of algebraic thinking.

Janet: OK. For a little context, more than a decade ago, my good friend and colleague, [Mariana] Levin—she's at Western Michigan University—she and I used to talk about all of the algebraic thinking we saw our children doing when they were toddlers—this is maybe 10 or more years ago—in their play, and just watching them act in the world. And we started keeping a list of these things we saw. And it grew and grew, and finally we decided to write about this in our 2020 FLM article ["Seeds of Algebraic Thinking: Towards a Research Agenda" in For the Learning of Mathematics] that introduced the seeds of algebraic thinking idea. Since they were still toddlers, they weren't actually expressing full algebraic conceptions, but they were displaying bits of algebraic thinking that we called "seeds." And so this idea, these small conceptual resources, grows out of the knowledge and pieces perspective on learning that came out of Berkeley in the nineties, led by Andy diSessa.

And generally that's the perspective that knowledge is made up of small cognitive bits rather than larger concepts. So if we're thinking of addition, rather than thinking of it as leveled, maybe at the first level there's knowing how to count and add two groups of numbers. And then maybe at another level we add two negative numbers, and then at another level we could add positives and negatives. So that might be a stage-based way of thinking about it.

And instead, if we think about this in terms of little bits of resources that students bring, the idea of combining bunches of things—the idea of like entities or nonlike entities, opposites, positives and negatives, the idea of opposites canceling—all those kinds of things and other such resources to think about addition. It's that perspective that we're going with. And it's not like we master one level and move on to the next. It's more that these pieces are here, available to us. We come to a situation with these resources and call upon them and connect them as it comes up in the context.

Mike: I think that feels really intuitive, particularly for anyone who's taught young children. That really brings me back to the days when I was teaching kindergartners and first graders.

I want to ask you about something else. You all mentioned several things like this notion of "do, undo" or "closing in" or the idea of "in-betweenness" while we were preparing for this interview. And I'm wondering if you could describe what these things mean in some detail for our audience, and then maybe connect them back with this notion of the seeds of algebraic thinking.

Margaret: Yeah, sure. So we would say that these are different seeds of algebraic thinking that kids might activate as they learn math and then also learn more formal algebra. So the first seed, the doing and undoing that you mentioned, is really completing some sort of action or process and then reversing it.

So an example might be when a toddler stacks blocks or cups. I have lots of nieces and nephews or friends' kids who I've seen do this often—all the time, really—when they'll maybe make towers of blocks, stack them up one by one and then sort of unstack them, right? So later this experience might apply to learning about functions, for example, as students plug in values as inputs, that's kind of the doing part, but also solve functions at certain outputs to find the input. So that's kind of one example there.

And then you also talked about closing in and in-betweenness, which might both be related to intervals. So closing in is a seed where it's sort of related to getting closer and closer to a desired value. And then in formal algebra, and maybe math leading up to formal algebra, the seed might be activated when students work with inequalities maybe, or maybe ordering fractions.

And then the last seed that you mentioned there, in-betweenness, is the idea of being between two things. For example, kids might have experiences with the story of Goldilocks and the Three Bears, and the porridge being too hot, too cold, or just right. So that "just right" is in-between. So these seats might relate to inequalities and the idea that solutions of math problems might be a range of values and not just one.

Mike: So part of what's so exciting about this conversation is that the seeds of algebraic thinking really can emerge from children's lived experience, meaning kids are coming with informal prior knowledge that we can access. And I'm wondering if you can describe some examples of children's play, or even everyday tasks, that cultivate these seeds of algebraic thinking.

Janet: That's great. So when I think back to the early days when we were thinking about these ideas, one example stands out in my head. I was going to the grocery store with my daughter who was about three at the time, and she just did not like the grocery store at all. And when we were in the car, I told her, "Oh, don't worry, we're just going in for a short bit of time, just a second." And she sat in the back and said, "Oh, like the capital letter A." I remember being blown away thinking about all that came together for her to think about that image, just the relationship between time and distance, the amount of time highlighting the instantaneous nature of the time we'd actually be in the store, all kinds of things.

And I think in terms of play examples, there were so many. When she was little, she was gifted a play doctor kit. So it was a plastic kit that had a stethoscope and a blood pressure monitor, all these old-school tools. And she would play doctor with her stuffed animals. And she knew that any one of her stuffed animals could be the patient, but it probably wouldn't be a cup. So she had this idea that these could be candidates for patients, and it was this—but only certain things. We refer to this concept as "replacement," and it's this idea that you can replace whatever this blank box is with any number of things, but maybe those things are limited and maybe that idea comes into play when thinking about variables in formal algebra.

Margaret: A couple of other examples just from the seeds that you asked about in the previous question. One might be if you're talking about closing in, games like when kids play things like "you're getting warmer" or "you're getting colder" when they're trying to find a hidden object or you're closing in when tuning an instrument, maybe like a guitar or a violin.

And then for in-betweeness, we talked about Goldilocks, but it could be something as simple as, "I'm sitting in between my two parents" or measuring different heights and there's someone who's very tall and someone who's very short, but then there are a bunch of people who also fall in between. So those are some other examples.

Mike: You're making me wonder about some of these ideas, these concepts, these habits of mind that these seeds grow into during children's elementary learning experiences. Can we talk about that a bit?

Janet: Sure. Thank you for that question.

So we think of seeds as a little more general. So rather than a particular seed growing into something or being destined for something, it's more that a seed becomes activated more in a particular context and connections with other seeds get strengthened. So for example, the idea of like or nonlike terms with the positive and negative numbers. Like or nonlike or opposites can come up in so many different contexts. And that's one seed that gets evoked when thinking potentially when thinking about addition. So rather than a seed being planted and growing into things, it's more like there are these seeds, these resources that children collect as they act on the world and experience things. And in particular contexts, certain seeds are evoked and then connected. And then in other contexts, as the context becomes more familiar, maybe they're evoked more often and connected more strongly. And then that becomes something that's connected with that context. And that's how we see children learning as they become more expert in a particular context or situation.

Mike: So in some ways it feels almost more like a neural network of sorts. Like the more that these connections are activated, the stronger the connection becomes. Is that a better analogy than this notion of seeds growing? It's more so that there are connections that are made and deepened, for lack of a better way of saying it?

Janet: Mm-hmm. And pruned in certain circumstances. We actually struggled a bit with the name because we thought seeds might evoke this, "Here's a seed, it's this particular seed, it grows into this particular concept." But then we really struggled with other neurons of algebraic thinking. So we tossed around some other potential ideas in it to kind of evoke that image a little better. But yes, that's exactly how I would think about it.

Mike: I mean, just to digress a little bit, I think it's an interesting question for you all as you're trying to describe this relationship, because in some respects it does resemble seeds—meaning that the beginnings of this set of ideas are coming out of lived experiences that children have early in their lives. And then those things are connected and deepened—or, as you said, pruned. So it kind of has features of this notion of a seed, but it also has features of a network that is interconnected, which I suspect is probably why it's fairly hard to name that.

Janet: Mm-hmm. And it does have—so if you look at, for example, the replacement seed, my daughter playing doctor with her stuffed animals, the replacement seed there. But you can imagine that that seed, it's domain agnostic, so it can come out in grammar. For instance, the ad-libs, a noun goes here, and so it can be any different noun. It's the same idea, different context. And you can see the thread among contexts, even though it's not meaning the same thing or not used in the same way necessarily.

Mike: It strikes me that understanding the seeds of algebraic thinking is really a powerful tool for educators. They could, for example, use it as a lens when they're planning instruction or interpreting student reasoning. Can you talk about this, Margaret and Janet?

Margaret: Yeah, sure, definitely. So we've seen that teachers who take a seeds lens can be really curious about where student ideas come from. So, for example, when a student talks about a math solution, maybe instead of judging whether the answer is right or wrong, a teacher might actually be more curious about how the student came to that idea. In some of our work, we've seen teachers who have a seeds perspective can look for pieces of a student answer that are productive instead of taking an entire answer as right or wrong. So we think that seeds can really help educators intentionally look for student assets and off of them. And for us, that's students' informal and lived experiences.

Janet: And kind of going along with that, one of the things we really emphasize in our methods courses, and is emphasized in teacher education in general, is this idea of excavating for student ideas and looking at what's good about what the student says and reframing what a student says, not as a misconception, but reframing it as what's positive about this idea. And we think that having this mindset will help teachers do that. Just knowing that these are things students bring to the situation, these potentially productive resources they have. Is it productive in this case? Maybe. If it's not, what could make it more productive? So having teachers look for these kinds of things we found as helpful in classrooms.

Mike: I'm going to ask a question right now that I think is perhaps a little bit challenging, but I suspect it might be what people who are listening are wondering, which is: Are there any generalizable instructional moves that might support formal or informal algebraic thinking that you'd like to see elementary teachers integrate into their classroom practice?

Margaret: Yeah, I mean, I think, honestly, it's: Listen carefully to kids' ideas with an open mind. So as you listen to what kids are saying, really thinking about why they're saying what they're saying, maybe where that thinking comes from and how you can leverage it in productive ways.

Mike: So I want to go back to the analogy of seeds. And I also want to think about this knowing what you said earlier about the fact that some of the analogy about seeds coming early in a child's life or emerging from their lived experiences, that's an important part of thinking about it. But there's also this notion that time and experiences allow some connections to be made and to grow or to be pruned.

What I'm thinking about is the gardener. The challenge in education is that the gardener who is working with students in the form of the teacher and they do some cultivation, they might not necessarily be able to kind of see the horizon, see where some of this is going, see what's happening. So if we have a gardener who's cultivating or drawing on some of the seeds of algebraic thinking in their early childhood students and their elementary students, what do you think the impact of trying to draw on the seeds or make those connections can be for children and students in the long run?

Janet: I think [there are] a couple of important points there. And first, one is early on in a child's life. Because experiences breed seeds or because seeds come out of experiences, the more experiences children can have, the better. So for example, if you're in early grades, and you can read a book to a child, they can listen to it, but what else can they do? They could maybe play with toys and act it out. If there's an activity in the book, they could pretend or really do the activity. Maybe it's baking something or maybe it's playing a game. And I think this is advocated in literature on play and early childhood experiences, including Montessori experiences. But the more and varied experiences children can have, the more seeds they'll gain in different experiences.

And one thing a teacher can do early on and throughout is look at connections. Look at, "Oh, we did this thing here. Where might it come out here?" If a teacher can identify an important seed, for instance, they can work to strengthen it in different contexts as well. So giving children experiences and then looking for ways to strengthen key ideas through experiences.

Mike: One of the challenges of hosting a podcast is that we've got about 20 to 25 minutes to discuss some really big ideas and some powerful practices. And this is one of those times where I really feel that. And I'm wondering, if we have listeners who wanted to continue learning about the ways that they can cultivate the seeds of algebraic thinking, are there particular resources or bodies of research that you would recommend?

Janet: So from our particular lab we have a website, and it's notice-lab.com, and that's continuing to be built out. The project is funded by NSF [the National Science Foundation], and we're continuing to add resources. We have links to articles. We have links to ways teachers and parents can use seeds. We have links to professional development for teachers. And those will keep getting built out over time.

Margaret, do you want to talk about the article?

Margaret: Sure, yeah. Janet and I actually just had an article recently come out in Mathematics Teacher: Learning and Teaching from NCTM [National Council of Teachers of Mathematics]. And it's [in] Issue 5, and it's called "Leveraging Early Algebraic Experiences." So that's definitely another place to check out.

And Janet, anything else you want to mention?

Janet: I think the website has a lot of resources as well.

Mike: So I've read the article and I would encourage anyone to take a look at it. We'll add a link to the article and also a link to the website in the show notes for people who are listening who want to check those things out.

I think this is probably a great place to stop. But I want to thank you both so much for joining us. Janet and Margaret, it's really been a pleasure talking with both of you.

Janet: Thank you so much, Mike. It's been a pleasure.

Margaret: You too. Thanks so much for having us.

Mike: This podcast is brought to you by The Math Learning Center and the Maier Math Foundation, dedicated to inspiring and enabling all individuals to discover and develop their mathematical confidence and ability.

© 2025 The Math Learning Center | www.mathlearningcenter.org

...more
View all episodesView all episodes
Download on the App Store

Rounding UpBy The Math Learning Center

  • 5
  • 5
  • 5
  • 5
  • 5

5

19 ratings


More shows like Rounding Up

View all
Hidden Brain by Hidden Brain, Shankar Vedantam

Hidden Brain

43,693 Listeners

The Cult of Pedagogy Podcast by Jennifer Gonzalez

The Cult of Pedagogy Podcast

2,407 Listeners

The Daily by The New York Times

The Daily

112,250 Listeners

Making Math Moments That Matter by Kyle Pearce & Jon Orr

Making Math Moments That Matter

421 Listeners

The Build Math Minds Podcast by Christina Tondevold

The Build Math Minds Podcast

139 Listeners

Melissa & Lori Love Literacy ® by Supported by Great Minds

Melissa & Lori Love Literacy ®

425 Listeners

Science of Reading: The Podcast by Amplify Education

Science of Reading: The Podcast

658 Listeners

Reach All Readers by Anna Geiger

Reach All Readers

208 Listeners

Math is Figure-Out-Able! by Pam Harris, Kim Montague

Math is Figure-Out-Able!

258 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,942 Listeners

The Mel Robbins Podcast by Mel Robbins

The Mel Robbins Podcast

20,363 Listeners

The Dr. Gabrielle Lyon Show by Dr. Gabrielle Lyon

The Dr. Gabrielle Lyon Show

1,187 Listeners

Wiser Than Me with Julia Louis-Dreyfus by Lemonada Media

Wiser Than Me with Julia Louis-Dreyfus

11,488 Listeners

Math Chat by Mona Iehl

Math Chat

36 Listeners

Chalk & Talk by Anna Stokke

Chalk & Talk

81 Listeners