
Sign up to save your podcasts
Or
2017年,谷歌一篇划时代的论文《Attention is all you need》掀开这一轮人工智能的开幕式,这篇论文就是大名鼎鼎的Transformer。7年过去了,我们看到在这篇论文的基础上加入算力、算法开启了AI时代的第三次科技浪潮。
今天我们的嘉宾是来自Meta Fair的研究员田渊栋博士,他最近也发表了两片论文都在都与端侧小模型相关,一片论文是《 MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases》中开始卷 10 亿以下参数小模型,主打在移动设备上运行 LLM;另一片论文是《GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection》,由于离应用更近在解决更实际的问题,他的论文被业界很多人问到,而过去五年,他所有的研究都在回答一个问题:神经网络是如何工作的?
今天我们就一起来解读田渊栋最近的两篇论文,也一起聊聊最近大火的Sora、Transformer与AGI。
【老罗直播预告】
【主播】
田渊栋博士,Meta AI人工智能研究院(FAIR)研究员及高级经理,2018年围棋开源项目(ELF OpenGo)研究及工程负责人和第一作者。曾获2021年国际机器学习大会(ICML)杰出论文奖提名(Outstanding Paper Honorable Mentions)及2013年国际计算机视觉大会(ICCV)马尔奖提名(Marr Prize Honorable Mentions)。研究方向为深度强化学习,表示学习和优化,历任机器学习国际会议ICML,NeurIPS,AAAI, AIStats领域主席。2013-2014年在Google无人驾驶团队任软件工程师。
【你将听到】
【相关信息拓展】
【后期】
【在这里找到我们】
4.7
159159 ratings
2017年,谷歌一篇划时代的论文《Attention is all you need》掀开这一轮人工智能的开幕式,这篇论文就是大名鼎鼎的Transformer。7年过去了,我们看到在这篇论文的基础上加入算力、算法开启了AI时代的第三次科技浪潮。
今天我们的嘉宾是来自Meta Fair的研究员田渊栋博士,他最近也发表了两片论文都在都与端侧小模型相关,一片论文是《 MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases》中开始卷 10 亿以下参数小模型,主打在移动设备上运行 LLM;另一片论文是《GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection》,由于离应用更近在解决更实际的问题,他的论文被业界很多人问到,而过去五年,他所有的研究都在回答一个问题:神经网络是如何工作的?
今天我们就一起来解读田渊栋最近的两篇论文,也一起聊聊最近大火的Sora、Transformer与AGI。
【老罗直播预告】
【主播】
田渊栋博士,Meta AI人工智能研究院(FAIR)研究员及高级经理,2018年围棋开源项目(ELF OpenGo)研究及工程负责人和第一作者。曾获2021年国际机器学习大会(ICML)杰出论文奖提名(Outstanding Paper Honorable Mentions)及2013年国际计算机视觉大会(ICCV)马尔奖提名(Marr Prize Honorable Mentions)。研究方向为深度强化学习,表示学习和优化,历任机器学习国际会议ICML,NeurIPS,AAAI, AIStats领域主席。2013-2014年在Google无人驾驶团队任软件工程师。
【你将听到】
【相关信息拓展】
【后期】
【在这里找到我们】
108 Listeners
315 Listeners
445 Listeners
178 Listeners
52 Listeners
274 Listeners
23 Listeners
263 Listeners
45 Listeners
289 Listeners
27 Listeners
27 Listeners
4 Listeners
9 Listeners
45 Listeners