
Sign up to save your podcasts
Or
Large language models (LLMs) can "lie", which we define as outputting false statements despite "knowing" the truth in a demonstrable sense. LLMs might "lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.
Source:
https://www.lesswrong.com/posts/khFC2a4pLPvGtXAGG/how-to-catch-an-ai-liar-lie-detection-in-black-box-llms-by
Narrated for LessWrong by TYPE III AUDIO.
Share feedback on this narration.
[125+ Karma Post] ✓
4.8
1111 ratings
Large language models (LLMs) can "lie", which we define as outputting false statements despite "knowing" the truth in a demonstrable sense. LLMs might "lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.
Source:
https://www.lesswrong.com/posts/khFC2a4pLPvGtXAGG/how-to-catch-an-ai-liar-lie-detection-in-black-box-llms-by
Narrated for LessWrong by TYPE III AUDIO.
Share feedback on this narration.
[125+ Karma Post] ✓
2,389 Listeners
123 Listeners
4,136 Listeners
87 Listeners
251 Listeners
87 Listeners
389 Listeners
5,438 Listeners
128 Listeners
198 Listeners
121 Listeners
75 Listeners
145 Listeners
123 Listeners
1 Listeners