
Sign up to save your podcasts
Or


Host: Jeff Fox with special guest, Emma Wilson.
Emma H. Wilson of the University of California, Riverside, talks with Jeff Fox about efforts, with her collaborators to determine more precisely how Toxoplasma gondii parasites disrupt the mammalian brain—in this case, the brains of mice. This same parasite infects about one-third of the human population, but is held in check by the immune system unless those host defense mechanisms become impaired.
Wilson and her collaborators find that these parasites interfere with the cycling of the neurotransmitter glutamate within the central nervous system, blocking its uptake by astrocytes, widely distributed cells within brains that are intertwine with and thus work very closely with neurons, which are the main cells for transmitting nerve impulses throughout the central nervous system.
Some damaging effects of the parasites can be reversed by treating the mice with a drug—in this case, it happens to be an antibacterial drug but here acts by a separate mechanism-- that helps to restore the glutamate transport protein in astrocytes. In this way, it partly corrects that glutamate imbalance within the brain.
This story was featured in the August 2016 issue of Microbe Magazine.
Subscribe to MMP (free) on iTunes, Stitcher, Android, RSS, or by email. You can also listen on your mobile device with the Microbeworld app.
Send your microbiology questions and comments (email or audio file) to [email protected]
Tweet me your questions about this episode or just to say hi!
By American Society for Microbiology4.6
2424 ratings
Host: Jeff Fox with special guest, Emma Wilson.
Emma H. Wilson of the University of California, Riverside, talks with Jeff Fox about efforts, with her collaborators to determine more precisely how Toxoplasma gondii parasites disrupt the mammalian brain—in this case, the brains of mice. This same parasite infects about one-third of the human population, but is held in check by the immune system unless those host defense mechanisms become impaired.
Wilson and her collaborators find that these parasites interfere with the cycling of the neurotransmitter glutamate within the central nervous system, blocking its uptake by astrocytes, widely distributed cells within brains that are intertwine with and thus work very closely with neurons, which are the main cells for transmitting nerve impulses throughout the central nervous system.
Some damaging effects of the parasites can be reversed by treating the mice with a drug—in this case, it happens to be an antibacterial drug but here acts by a separate mechanism-- that helps to restore the glutamate transport protein in astrocytes. In this way, it partly corrects that glutamate imbalance within the brain.
This story was featured in the August 2016 issue of Microbe Magazine.
Subscribe to MMP (free) on iTunes, Stitcher, Android, RSS, or by email. You can also listen on your mobile device with the Microbeworld app.
Send your microbiology questions and comments (email or audio file) to [email protected]
Tweet me your questions about this episode or just to say hi!

137 Listeners

2,056 Listeners

28 Listeners

456 Listeners

499 Listeners

37 Listeners

516 Listeners

12 Listeners

20 Listeners

4 Listeners

233 Listeners

1,146 Listeners

16,907 Listeners

276 Listeners

192 Listeners

514 Listeners

368 Listeners

375 Listeners

185 Listeners

4 Listeners

36 Listeners

85 Listeners

3 Listeners