
Sign up to save your podcasts
Or


Host: Jeff Fox with special guests, Gemma Reguera and Geoffrey Gadd.
Gemma Reguera of Michigan State University in East Lansing and Geoffrey Gadd of the University of Dundee in Scotland talk with Jeff Fox about their efforts, to probe some of the electrical properties of materials produced naturally by specific microorganisms. Thus, Geobacter bacteria make protein filaments, called pili, that act as nanowires, transporting 1 billion electrons per second, according to Reguera and her collaborators. Analytic evidence suggests that the electrons move along these proteins by a thermally activated, multistep hopping mechanism, enabling these bacteria to draw electrons from the extracellular milieu.
Meanwhile, the fungus Neurospora crassa can transform manganese into a mineral composite with favorable electrochemical properties. The fungal cells produce filaments that take up manganese, which after heat treatment forms structures that have electrochemical properties that are suitable for use in supercapacitors or lithium-ion batteries. The carbonized fungal biomass-mineral composite has excellent cycling stability and retains more than 90% capacity after 200 cycles, according to Gadd and his collaborators.
This story was featured in the June 2016 issue of Microbe Magazine.
Subscribe to MMP (free) on iTunes, Stitcher, Android, RSS, or by email. You can also listen on your mobile device with the Microbeworld app.
Send your microbiology questions and comments (email or audio file) to [email protected]
Tweet me your questions about this episode or just say hi!
By American Society for Microbiology4.6
2424 ratings
Host: Jeff Fox with special guests, Gemma Reguera and Geoffrey Gadd.
Gemma Reguera of Michigan State University in East Lansing and Geoffrey Gadd of the University of Dundee in Scotland talk with Jeff Fox about their efforts, to probe some of the electrical properties of materials produced naturally by specific microorganisms. Thus, Geobacter bacteria make protein filaments, called pili, that act as nanowires, transporting 1 billion electrons per second, according to Reguera and her collaborators. Analytic evidence suggests that the electrons move along these proteins by a thermally activated, multistep hopping mechanism, enabling these bacteria to draw electrons from the extracellular milieu.
Meanwhile, the fungus Neurospora crassa can transform manganese into a mineral composite with favorable electrochemical properties. The fungal cells produce filaments that take up manganese, which after heat treatment forms structures that have electrochemical properties that are suitable for use in supercapacitors or lithium-ion batteries. The carbonized fungal biomass-mineral composite has excellent cycling stability and retains more than 90% capacity after 200 cycles, according to Gadd and his collaborators.
This story was featured in the June 2016 issue of Microbe Magazine.
Subscribe to MMP (free) on iTunes, Stitcher, Android, RSS, or by email. You can also listen on your mobile device with the Microbeworld app.
Send your microbiology questions and comments (email or audio file) to [email protected]
Tweet me your questions about this episode or just say hi!

137 Listeners

2,056 Listeners

28 Listeners

456 Listeners

499 Listeners

37 Listeners

516 Listeners

12 Listeners

20 Listeners

4 Listeners

233 Listeners

1,146 Listeners

16,907 Listeners

276 Listeners

192 Listeners

514 Listeners

368 Listeners

375 Listeners

185 Listeners

4 Listeners

36 Listeners

85 Listeners

3 Listeners