
Sign up to save your podcasts
Or
本文摘编中国人民大学出版社出品书籍《人工智能全球格局》书评文章,本书由国务院发展研究中心国际技术经济研究所、中国电子学会、智慧芽共同撰写,笔记侠经出版社授权发布。
人工智能是一个需要持续积累和技术迭代的过程,注定是一件漫长的事。
智能数据分析与真正意义的人工智能存在本质区别
关于媒体上流行的产业驱动的人工智能故事,大家都听过非常多了,我对它的总结是:当前几乎所有这些工作,准确地说叫作基于数据的人工智能(data based artificial intelligence),简称数据智能。因为,这些工作是基于大规模数据,找到一个合适的数学函数来拟合数据,产生拟定的预期。
如AlphaGo,如果反问:通过AlphaGo一系列的工作,我们对人类的决策机制有了哪些新的认识?其实是几乎没有的。因此,基于数据构建的看似智能的模型,其实质只是信息处理,是大规模的数据分析,与“智能”的本质无关。
但是,我相信未来的人工智能是向机制智能发展的。我们称之为“基于机制的人工智能”(mechanism based artificial intelligence)。也就是说,我们真正需要追寻的是生物智能的本质。对于任意一项认知功能,包括对人脑如何去协调数百项的认知功能去探索和解决没见过的问题,都是在回答它的科学本质是什么。
人工智能研究从开始至今不过短短几十年,而真正人类的智能已经经过了数亿年的演化,在演化过程中通过基因突变等获得了不同的尝试,生成了不同物种的脑。为什么数亿年的演化,把人脑塑造成这样,而不是果蝇或者小鼠的样子?人脑又有什么样的优势?我们做的工作是从不同类型物种的大脑的建模开始,从中抽象出认知结构与机理,然后应用到机器智能当中去。
数亿年的演化使得人类大脑把人体系统的结构和机制有机地组合起来,使得人体系统表现出更好的鲁棒性(鲁棒是Robust的音译,也就是健壮和强壮的意思)和抗噪能力。在目前最理想的状况下,深度学习系统在有足够多的数据训练,并且测试数据与训练数据都理想的状况下,能够获得与人类大脑同等水平的鲁棒性和抗噪能力。但是,在任何客观的现实世界中,理想的状态都不存在。脑结构与机制的结合使得高度鲁棒性和抗噪性可以从我们构建的类脑模型中涌现出来,这并非特定的函数设计所能实现的。
人类显然有很强的决策能力。人的决策是通过若干脑区的协同来实现的。我们把这样的决策模型放到无人机、机器人等不同平台上,使得无人机等学会自主避障、自主穿越复杂场景。所有的规则都是在线学习的,机器人学习的速度刚开始跟人类似,后面则比人快,因为其计算能力比人强。
把同样的模型用到机器人上,让它去理解人类的意图等不同的应用,其实都只是类脑人工智能在狭义人工智能中的一些进展。目前正在探索的问题,就是如何使得模型变得通用。比如,谷歌DeepMind提出的模型,它希望一种网络可以应对多个任务。可问题是:当它学习第二个任务的时候,第一个任务的性能也会下降,如果它还想同时完成第一个任务的话,第二个任务也不能得到最好应对。这都不是人类智能的特点。人脑至少可以分成近250个脑区。这些脑区是自组织协同的,可以去应对不同的任务,也就是说,人脑的自组织原理才是最重要的。
人类的认知功能至少有150项,到目前为止,全世界的人工智能顶多挑战了其中的30项,剩余的绝大多数很少有人去研究,比如说意识的问题。在神经科学领域,可以通过2~5周的训练使得以往被认为没有自我意识的恒河猴通过镜像测试,从而被认为涌现出了自我意识。在这样的实验的启发下,我们构建了猴脑的点神经元脉冲神经网络模型,该模型具有363个脑区。应用近似猴脑的计算模型以及相关的训练实验,机器人通过了镜像测试。
目前,虽然机器人可以通过镜像测试,但问题是,我们能说机器人有了自我意识吗?我们可以说,猴子通过了镜像测试,所以我们认为这个物种有自我意识;但反过来,机器人通过了能够说明吗?实际上不行。所以,现在我们的结论是:一个不具备人类认为的意识能力的机器人,它也能通过镜像测试。因此,传统镜像测试判断物种是否具有自我意识的假设实际上是不严谨的。实现机器的自我意识是我们重要的努力方向,很显然这还只是初步自我感知的开始。总体而言,我们希望未来能通过计算建模来发现智能演化的规律,预测智能演化的趋势,并应用到未来人工智能模型的自主智能演化上。
探索未来智能的两个方向
当前我们在智能的探索上做了两个方向上的努力,一个是从机器向拟人化发展,一个是从人类向机械化方向发展,扩展人类的智能。一方面,机器的拟人化(humanization)使得机器越来越像人,使它能够与未来的人类更好地交互。另一方面,人类也在通过延展认知能力提升着自身,所以这部分工作叫作mechanization,就是机械化。未来人工智能的发展就是从上述两个方向逼近,向具有意识的超级智能生命体发展。
两个方向需要回答的科学问题出发点是不一样的。从机器智能的角度出发,我们需要回答它们到底是谁、我们到底怎么构建一个具有智能的生命的问题。从人类的角度出发,问题是我们人的大脑是怎么工作的、我们是谁。未来,有意识的超级智能生命体的发展不是割裂的,不是两个方向无关的努力,而是两个方向朝着统一的目标深度融合探索的未来。
本期编辑:杨丽 审稿及主播:晴天
3
22 ratings
本文摘编中国人民大学出版社出品书籍《人工智能全球格局》书评文章,本书由国务院发展研究中心国际技术经济研究所、中国电子学会、智慧芽共同撰写,笔记侠经出版社授权发布。
人工智能是一个需要持续积累和技术迭代的过程,注定是一件漫长的事。
智能数据分析与真正意义的人工智能存在本质区别
关于媒体上流行的产业驱动的人工智能故事,大家都听过非常多了,我对它的总结是:当前几乎所有这些工作,准确地说叫作基于数据的人工智能(data based artificial intelligence),简称数据智能。因为,这些工作是基于大规模数据,找到一个合适的数学函数来拟合数据,产生拟定的预期。
如AlphaGo,如果反问:通过AlphaGo一系列的工作,我们对人类的决策机制有了哪些新的认识?其实是几乎没有的。因此,基于数据构建的看似智能的模型,其实质只是信息处理,是大规模的数据分析,与“智能”的本质无关。
但是,我相信未来的人工智能是向机制智能发展的。我们称之为“基于机制的人工智能”(mechanism based artificial intelligence)。也就是说,我们真正需要追寻的是生物智能的本质。对于任意一项认知功能,包括对人脑如何去协调数百项的认知功能去探索和解决没见过的问题,都是在回答它的科学本质是什么。
人工智能研究从开始至今不过短短几十年,而真正人类的智能已经经过了数亿年的演化,在演化过程中通过基因突变等获得了不同的尝试,生成了不同物种的脑。为什么数亿年的演化,把人脑塑造成这样,而不是果蝇或者小鼠的样子?人脑又有什么样的优势?我们做的工作是从不同类型物种的大脑的建模开始,从中抽象出认知结构与机理,然后应用到机器智能当中去。
数亿年的演化使得人类大脑把人体系统的结构和机制有机地组合起来,使得人体系统表现出更好的鲁棒性(鲁棒是Robust的音译,也就是健壮和强壮的意思)和抗噪能力。在目前最理想的状况下,深度学习系统在有足够多的数据训练,并且测试数据与训练数据都理想的状况下,能够获得与人类大脑同等水平的鲁棒性和抗噪能力。但是,在任何客观的现实世界中,理想的状态都不存在。脑结构与机制的结合使得高度鲁棒性和抗噪性可以从我们构建的类脑模型中涌现出来,这并非特定的函数设计所能实现的。
人类显然有很强的决策能力。人的决策是通过若干脑区的协同来实现的。我们把这样的决策模型放到无人机、机器人等不同平台上,使得无人机等学会自主避障、自主穿越复杂场景。所有的规则都是在线学习的,机器人学习的速度刚开始跟人类似,后面则比人快,因为其计算能力比人强。
把同样的模型用到机器人上,让它去理解人类的意图等不同的应用,其实都只是类脑人工智能在狭义人工智能中的一些进展。目前正在探索的问题,就是如何使得模型变得通用。比如,谷歌DeepMind提出的模型,它希望一种网络可以应对多个任务。可问题是:当它学习第二个任务的时候,第一个任务的性能也会下降,如果它还想同时完成第一个任务的话,第二个任务也不能得到最好应对。这都不是人类智能的特点。人脑至少可以分成近250个脑区。这些脑区是自组织协同的,可以去应对不同的任务,也就是说,人脑的自组织原理才是最重要的。
人类的认知功能至少有150项,到目前为止,全世界的人工智能顶多挑战了其中的30项,剩余的绝大多数很少有人去研究,比如说意识的问题。在神经科学领域,可以通过2~5周的训练使得以往被认为没有自我意识的恒河猴通过镜像测试,从而被认为涌现出了自我意识。在这样的实验的启发下,我们构建了猴脑的点神经元脉冲神经网络模型,该模型具有363个脑区。应用近似猴脑的计算模型以及相关的训练实验,机器人通过了镜像测试。
目前,虽然机器人可以通过镜像测试,但问题是,我们能说机器人有了自我意识吗?我们可以说,猴子通过了镜像测试,所以我们认为这个物种有自我意识;但反过来,机器人通过了能够说明吗?实际上不行。所以,现在我们的结论是:一个不具备人类认为的意识能力的机器人,它也能通过镜像测试。因此,传统镜像测试判断物种是否具有自我意识的假设实际上是不严谨的。实现机器的自我意识是我们重要的努力方向,很显然这还只是初步自我感知的开始。总体而言,我们希望未来能通过计算建模来发现智能演化的规律,预测智能演化的趋势,并应用到未来人工智能模型的自主智能演化上。
探索未来智能的两个方向
当前我们在智能的探索上做了两个方向上的努力,一个是从机器向拟人化发展,一个是从人类向机械化方向发展,扩展人类的智能。一方面,机器的拟人化(humanization)使得机器越来越像人,使它能够与未来的人类更好地交互。另一方面,人类也在通过延展认知能力提升着自身,所以这部分工作叫作mechanization,就是机械化。未来人工智能的发展就是从上述两个方向逼近,向具有意识的超级智能生命体发展。
两个方向需要回答的科学问题出发点是不一样的。从机器智能的角度出发,我们需要回答它们到底是谁、我们到底怎么构建一个具有智能的生命的问题。从人类的角度出发,问题是我们人的大脑是怎么工作的、我们是谁。未来,有意识的超级智能生命体的发展不是割裂的,不是两个方向无关的努力,而是两个方向朝着统一的目标深度融合探索的未来。
本期编辑:杨丽 审稿及主播:晴天
3 Listeners
4 Listeners
1 Listeners
1 Listeners
2 Listeners
0 Listeners
0 Listeners
1 Listeners
0 Listeners
0 Listeners
1 Listeners
12 Listeners
0 Listeners
1 Listeners
0 Listeners
0 Listeners
1 Listeners
17 Listeners
313 Listeners
0 Listeners
428 Listeners
0 Listeners
2 Listeners
132 Listeners
272 Listeners
340 Listeners
32 Listeners
262 Listeners
230 Listeners
289 Listeners
30 Listeners
155 Listeners
3 Listeners
212 Listeners
273 Listeners