
Sign up to save your podcasts
Or
Grand événement - À la recherche d'un Avenir Commun Durable
L'IA et les mathématiques pour la météorologie et la climatologie
AI and math for meteorology and climatology
Collège de France
Année 2024-2025
5 mai 2025
Grand événement - AI and math for meteorology and climatology - Remi Lam : Learning global weather forecasting from data
Remi Lam
Massachusetts Institute of Technology, Staff Research Scientist, Google DeepMind
Résumé
This presentation will cover some of the recent advances in weather forecasting, learning directly from data using machine learning techniques.
It will discuss some of the limitations and pitfalls of training ML models for scientific applications, and will highlight new research opportunities.
Rémi Lam
Rémi Lam is a Staff Research Scientist at Google DeepMind working on making weather forecasting faster and more accurate.
His research leverages machine learning techniques such as adversarial neural networks, graph neural networks and diffusion models to design tools for precipitation nowcasting (DGMR) and global medium range weather prediction (GraphCast, GenCast).
5
1313 ratings
Grand événement - À la recherche d'un Avenir Commun Durable
L'IA et les mathématiques pour la météorologie et la climatologie
AI and math for meteorology and climatology
Collège de France
Année 2024-2025
5 mai 2025
Grand événement - AI and math for meteorology and climatology - Remi Lam : Learning global weather forecasting from data
Remi Lam
Massachusetts Institute of Technology, Staff Research Scientist, Google DeepMind
Résumé
This presentation will cover some of the recent advances in weather forecasting, learning directly from data using machine learning techniques.
It will discuss some of the limitations and pitfalls of training ML models for scientific applications, and will highlight new research opportunities.
Rémi Lam
Rémi Lam is a Staff Research Scientist at Google DeepMind working on making weather forecasting faster and more accurate.
His research leverages machine learning techniques such as adversarial neural networks, graph neural networks and diffusion models to design tools for precipitation nowcasting (DGMR) and global medium range weather prediction (GraphCast, GenCast).
64 Listeners
118 Listeners
72 Listeners
24 Listeners
60 Listeners
120 Listeners
221 Listeners
116 Listeners
65 Listeners
0 Listeners
0 Listeners
5 Listeners
72 Listeners
40 Listeners
0 Listeners
40 Listeners
1 Listeners
0 Listeners
75 Listeners
0 Listeners
0 Listeners
36 Listeners
0 Listeners
11 Listeners
0 Listeners
0 Listeners
0 Listeners
0 Listeners
0 Listeners
1 Listeners
3 Listeners
0 Listeners
0 Listeners
0 Listeners
0 Listeners